305915: CF1110A. Parity
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Parity
题意翻译
## 题目描述: 求$\sum_{i=1}^{k} a_i\times b^{k-i}$的奇偶性。 (如果看不懂上面式子的可以去看英语题目) ## 输入格式: 第一行:$b$和$k$ 第二行:$a_1,a_2,...,a_k$ ## 输出格式: - 是奇数:输出`odd` - 是偶数:输出`even`题目描述
You are given an integer $ n $ ( $ n \ge 0 $ ) represented with $ k $ digits in base (radix) $ b $ . So, $n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k. $ For example, if $ b=17, k=3 $ and $ a=\[11, 15, 7\] $ then $ n=11\\cdot17^2+15\\cdot17+7=3179+255+7=3441 $ Determine whether $ n$ is even or odd.输入输出格式
输入格式
The first line contains two integers $ b $ and $ k $ ( $ 2\le b\le 100 $ , $ 1\le k\le 10^5 $ ) — the base of the number and the number of digits. The second line contains $ k $ integers $ a_1, a_2, \ldots, a_k $ ( $ 0\le a_i < b $ ) — the digits of $ n $ . The representation of $ n $ contains no unnecessary leading zero. That is, $ a_1 $ can be equal to $ 0 $ only if $ k = 1 $ .
输出格式
Print "even" if $ n $ is even, otherwise print "odd". You can print each letter in any case (upper or lower).
输入输出样例
输入样例 #1
13 3
3 2 7
输出样例 #1
even
输入样例 #2
10 9
1 2 3 4 5 6 7 8 9
输出样例 #2
odd
输入样例 #3
99 5
32 92 85 74 4
输出样例 #3
odd
输入样例 #4
2 2
1 0
输出样例 #4
even