305772: CF1088E. Ehab and a component choosing problem
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Ehab and a component choosing problem
题意翻译
## Description 给定一棵 $n$ 个节点的树,点有点权 $a_u$,可能为负。现在请你在树上找出 $k~(1~\leq~k~\leq~n)$ 个不相交集合,使得每个集合中的每对点都可以通过本集合中的点互相到达,假设选出的 $k$ 个集合的并集为 $s$,要求最大化: $$\frac{\sum_{u \in s} a_u}{k}$$ 如果有多解请输出 $k$ 最大的解 ## Input 第一行是节点个数 $n$。 下面一行 $n$ 个数代表点权 下面 $n - 1$ 行描述这棵树 ## Output 输出一行两个整数,分别是选出的点权和以及 $k$ **不约分** Translated by @ 一扶苏一题目描述
You're given a tree consisting of $ n $ nodes. Every node $ u $ has a weight $ a_u $ . You want to choose an integer $ k $ $ (1 \le k \le n) $ and then choose $ k $ connected components of nodes that don't overlap (i.e every node is in at most 1 component). Let the set of nodes you chose be $ s $ . You want to maximize: $ $\frac{\sum\limits_{u \in s} a_u}{k} $ $ </p><p>In other words, you want to maximize the sum of weights of nodes in $ s $ divided by the number of connected components you chose. Also, if there are several solutions, you want to <span class="tex-font-style-bf">maximize $ k$. Note that adjacent nodes can belong to different components. Refer to the third sample.输入输出格式
输入格式
The first line contains the integer $ n $ $ (1 \le n \le 3 \cdot 10^5) $ , the number of nodes in the tree. The second line contains $ n $ space-separated integers $ a_1 $ , $ a_2 $ , $ \dots $ , $ a_n $ $ (|a_i| \le 10^9) $ , the weights of the nodes. The next $ n-1 $ lines, each contains 2 space-separated integers $ u $ and $ v $ $ (1 \le u,v \le n) $ which means there's an edge between $ u $ and $ v $ .
输出格式
Print the answer as a non-reduced fraction represented by 2 space-separated integers. The fraction itself should be maximized and if there are several possible ways, you should maximize the denominator. See the samples for a better understanding.
输入输出样例
输入样例 #1
3
1 2 3
1 2
1 3
输出样例 #1
6 1
输入样例 #2
1
-2
输出样例 #2
-2 1
输入样例 #3
3
-1 -1 -1
1 2
2 3
输出样例 #3
-3 3
输入样例 #4
3
-1 -2 -1
1 2
1 3
输出样例 #4
-2 2