305640: CF1067E. Random Forest Rank
Memory Limit:512 MB
Time Limit:3 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Random Forest Rank
题意翻译
给定一棵$n$个节点的树 ,每条边有$\frac{1}{2}$的概率出现,可以得到一个森林,求这个森林邻接矩阵的秩的期望。题目描述
Let's define rank of undirected graph as rank of its adjacency matrix in $ \mathbb{R}^{n \times n} $ . Given a tree. Each edge of this tree will be deleted with probability $ 1/2 $ , all these deletions are independent. Let $ E $ be the expected rank of resulting forest. Find $ E \cdot 2^{n-1} $ modulo $ 998244353 $ (it is easy to show that $ E \cdot 2^{n-1} $ is an integer).输入输出格式
输入格式
First line of input contains $ n $ ( $ 1 \le n \le 5 \cdot 10^{5} $ ) — number of vertices. Next $ n-1 $ lines contains two integers $ u $ $ v $ ( $ 1 \le u, \,\, v \le n; \,\, u \ne v $ ) — indices of vertices connected by edge. It is guaranteed that given graph is a tree.
输出格式
Print one integer — answer to the problem.
输入输出样例
输入样例 #1
3
1 2
2 3
输出样例 #1
6
输入样例 #2
4
1 2
1 3
1 4
输出样例 #2
14
输入样例 #3
4
1 2
2 3
3 4
输出样例 #3
18