305475: CF1038B. Non-Coprime Partition
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Non-Coprime Partition
题意翻译
### 题目大意: 给定一个整数$n$,要求把$1$到$n$分别放入两个序列$s1,s2$,使得$\gcd(sum(s1),sum(s2))>1$ ### 输入格式: 一个整数$n$ ### 输出格式: 如果不能构成符合条件的序列,输出"No",否则输出"Yes",并在下两行输出$s1,s2$ ``` ### 题目大意: 给定一个整数$n$,要求把$1$到$n$分别放入两个序列$s1,s2$,使得$\gcd(sum(s1),sum(s2))>1$ ### 输入格式: 一个整数$n$ ### 输出格式: 如果不能构成符合条件的序列,输出"No",否则输出"Yes",并在下两行输出$s1,s2$ ```题目描述
Find out if it is possible to partition the first $ n $ positive integers into two non-empty disjoint sets $ S_1 $ and $ S_2 $ such that: $ \mathrm{gcd}(\mathrm{sum}(S_1), \mathrm{sum}(S_2)) > 1 $ Here $ \mathrm{sum}(S) $ denotes the sum of all elements present in set $ S $ and $ \mathrm{gcd} $ means the[greatest common divisor](https://en.wikipedia.org/wiki/Greatest_common_divisor). Every integer number from $ 1 $ to $ n $ should be present in exactly one of $ S_1 $ or $ S_2 $ .输入输出格式
输入格式
The only line of the input contains a single integer $ n $ ( $ 1 \le n \le 45\,000 $ )
输出格式
If such partition doesn't exist, print "No" (quotes for clarity). Otherwise, print "Yes" (quotes for clarity), followed by two lines, describing $ S_1 $ and $ S_2 $ respectively. Each set description starts with the set size, followed by the elements of the set in any order. Each set must be non-empty. If there are multiple possible partitions — print any of them.
输入输出样例
输入样例 #1
1
输出样例 #1
No
输入样例 #2
3
输出样例 #2
Yes
1 2
2 1 3