305467: CF1037B. Reach Median
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:2
Solved:0
Description
Reach Median
题意翻译
**题目大意:** 给定一个长度为$n$的序列和一个整数$s$,$n$一定为奇数 一次操作可以将序列中的某个数$+1$或者$-1$,问至少几次操作可以使这个序列的中位数等于$s$ **输入格式:** 第一行,两个整数$n,s$ 第二行,$n$个整数,表示序列中的数 **输出格式:** 一个整数,表示最少的操作次数题目描述
You are given an array $ a $ of $ n $ integers and an integer $ s $ . It is guaranteed that $ n $ is odd. In one operation you can either increase or decrease any single element by one. Calculate the minimum number of operations required to make the median of the array being equal to $ s $ . The median of the array with odd length is the value of the element which is located on the middle position after the array is sorted. For example, the median of the array $ 6, 5, 8 $ is equal to $ 6 $ , since if we sort this array we will get $ 5, 6, 8 $ , and $ 6 $ is located on the middle position.输入输出格式
输入格式
The first line contains two integers $ n $ and $ s $ ( $ 1\le n\le 2\cdot 10^5-1 $ , $ 1\le s\le 10^9 $ ) — the length of the array and the required value of median. The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1\le a_i \le 10^9 $ ) — the elements of the array $ a $ . It is guaranteed that $ n $ is odd.
输出格式
In a single line output the minimum number of operations to make the median being equal to $ s $ .
输入输出样例
输入样例 #1
3 8
6 5 8
输出样例 #1
2
输入样例 #2
7 20
21 15 12 11 20 19 12
输出样例 #2
6