305443: CF1032D. Barcelonian Distance
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Barcelonian Distance
题意翻译
## 题目描述 给出一个在二维平面直角坐标系第一象限内的,单位长度为1的无限大网格,每条直线都代表道路。又给你一条直线ax+by+c=0,也代表一条道路。 现在给你两个格点A,B坐标(x1,y1)和(x2,y2),让你求该两点间最短的道路距离。 ## 输入 第一行a,b,c表示直线ax+by+c=0 第二行x1,y1,x2,y2表示A(x1,y1),B(x2,y2)的坐标 ## 输出 求A,B间最短的道路距离(误差不超过10^−6)题目描述
In this problem we consider a very simplified model of Barcelona city. Barcelona can be represented as a plane with streets of kind $ x = c $ and $ y = c $ for every integer $ c $ (that is, the rectangular grid). However, there is a detail which makes Barcelona different from Manhattan. There is an avenue called Avinguda Diagonal which can be represented as a the set of points $ (x, y) $ for which $ ax + by + c = 0 $ . One can walk along streets, including the avenue. You are given two integer points $ A $ and $ B $ somewhere in Barcelona. Find the minimal possible distance one needs to travel to get to $ B $ from $ A $ .输入输出格式
输入格式
The first line contains three integers $ a $ , $ b $ and $ c $ ( $ -10^9\leq a, b, c\leq 10^9 $ , at least one of $ a $ and $ b $ is not zero) representing the Diagonal Avenue. The next line contains four integers $ x_1 $ , $ y_1 $ , $ x_2 $ and $ y_2 $ ( $ -10^9\leq x_1, y_1, x_2, y_2\leq 10^9 $ ) denoting the points $ A = (x_1, y_1) $ and $ B = (x_2, y_2) $ .
输出格式
Find the minimum possible travel distance between $ A $ and $ B $ . Your answer is considered correct if its absolute or relative error does not exceed $ 10^{-6} $ . Formally, let your answer be $ a $ , and the jury's answer be $ b $ . Your answer is accepted if and only if $ \frac{|a - b|}{\max{(1, |b|)}} \le 10^{-6} $ .
输入输出样例
输入样例 #1
1 1 -3
0 3 3 0
输出样例 #1
4.2426406871
输入样例 #2
3 1 -9
0 3 3 -1
输出样例 #2
6.1622776602