304473: CF853A. Planning
Memory Limit:512 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Planning
题意翻译
Helen在大都会机场工作,她的任务是安排每天的航班起飞时刻。今天一共有n架飞机将要起飞,第i架飞机将在第i分钟起飞。 大都会机场是大都会最重要的交通枢纽,因此想要原封不动地按照起飞时刻表的时刻起飞是很困难的。今天的情况也是如此:由于技术原因,在今天一开始的k分钟内飞机不允许起飞,因此必须创建一个新的起飞时刻表。 所有的航班必须在第(k+1)分钟到第(k+n)分钟内(包括两端)起飞,而且每分钟仅能有一架飞机起飞。然而,航班起飞的先后顺序可以与最初的时刻表排好的顺序不同,重排的时刻表只有一个限制:飞机不能比它在初始时刻表中起飞的时刻还要早的时刻起飞(即:第i架飞机必须在第i分钟后或第i分钟时起飞)。 Helen知道第i架飞机起飞时刻每延误一分钟机场所需支付的额外花费ci是多少。帮助她找到额外花费最小的方案。 输入格式: 输入数据的第一行包括两个整数n和k(1<=k<=n<=300000)。 第二行包括n个整数c1,c2,...,cn(1<=ci<=10^7). 输出格式: 输出数据的第一行包括一个整数,表示最小额外花费。 第二行包括n个整数t1,t2,...,tn(k+1<=ti<=k+n),ti表示第i架家航班起飞的时刻。如果同时存在多种方案,输出任意一种。 说明: 在样例中,如果Helen仅把每架飞机的起飞时刻都推迟2分钟,那么总额外花费是38。 但是,对于最佳结果来说,总额外花费为20。 感谢@radish布団 提供的翻译题目描述
Helen works in Metropolis airport. She is responsible for creating a departure schedule. There are $ n $ flights that must depart today, the $ i $ -th of them is planned to depart at the $ i $ -th minute of the day. Metropolis airport is the main transport hub of Metropolia, so it is difficult to keep the schedule intact. This is exactly the case today: because of technical issues, no flights were able to depart during the first $ k $ minutes of the day, so now the new departure schedule must be created. All $ n $ scheduled flights must now depart at different minutes between $ (k+1) $ -th and $ (k+n) $ -th, inclusive. However, it's not mandatory for the flights to depart in the same order they were initially scheduled to do so — their order in the new schedule can be different. There is only one restriction: no flight is allowed to depart earlier than it was supposed to depart in the initial schedule. Helen knows that each minute of delay of the $ i $ -th flight costs airport $ c_{i} $ burles. Help her find the order for flights to depart in the new schedule that minimizes the total cost for the airport.输入输出格式
输入格式
The first line contains two integers $ n $ and $ k $ ( $ 1<=k<=n<=300000 $ ), here $ n $ is the number of flights, and $ k $ is the number of minutes in the beginning of the day that the flights did not depart. The second line contains $ n $ integers $ c_{1},c_{2},...,c_{n} $ ( $ 1<=c_{i}<=10^{7} $ ), here $ c_{i} $ is the cost of delaying the $ i $ -th flight for one minute.
输出格式
The first line must contain the minimum possible total cost of delaying the flights. The second line must contain $ n $ different integers $ t_{1},t_{2},...,t_{n} $ ( $ k+1<=t_{i}<=k+n $ ), here $ t_{i} $ is the minute when the $ i $ -th flight must depart. If there are several optimal schedules, print any of them.
输入输出样例
输入样例 #1
5 2
4 2 1 10 2
输出样例 #1
20
3 6 7 4 5