304087: CF785A. Anton and Polyhedrons
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Anton and Polyhedrons
题意翻译
题目描述 Anton最喜欢的几何图形是正多面体。 有五种正多面体: 四面体:有4个4个三角形的面。 立方体:有6个6正方形的面。 八面体:有8个8个三角形的面。 十二面体:有12个12个五边形的面。 二十面体:有20个20个三角形的面。 形状如图: 编写程序,帮Anton求出他的n个多面体的总面数s。 输入输出格式 输入: 第一行为一个整数N(1<n<=200000) 第2~n+1行包含一个字符串s[i](Anton集合中的第i个多面体的名称) 输入方式如下(不带引号): “Tetrahedron”表示四面体; “Cube”表示立方体; “Octahedron”表示八面体; “Dodecahedron”表示十二面体; “Icosahedron”表示二十面体。 输出格式: 输出一个整数s。 说明: 在第一个样例输入中,Anton有一个二十面体、一个立方体、一个四面体和一个十二面体。二十面体有20个面,立方体有6个面,四面体有4个面,十二面体有12个面。所以,它们一共有20 + 6 + 4 + 12=42个面。 (好水的题目)题目描述
Anton's favourite geometric figures are regular polyhedrons. Note that there are five kinds of regular polyhedrons: - Tetrahedron. Tetrahedron has $ 4 $ triangular faces. - Cube. Cube has $ 6 $ square faces. - Octahedron. Octahedron has $ 8 $ triangular faces. - Dodecahedron. Dodecahedron has $ 12 $ pentagonal faces. - Icosahedron. Icosahedron has $ 20 $ triangular faces. All five kinds of polyhedrons are shown on the picture below: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF785A/19c5088ea45f2a6c0e1d14f3df7fa76121b5787c.png)Anton has a collection of $ n $ polyhedrons. One day he decided to know, how many faces his polyhedrons have in total. Help Anton and find this number!输入输出格式
输入格式
The first line of the input contains a single integer $ n $ $ (1<=n<=200000) $ — the number of polyhedrons in Anton's collection. Each of the following $ n $ lines of the input contains a string $ s_{i} $ — the name of the $ i $ -th polyhedron in Anton's collection. The string can look like this: - "Tetrahedron" (without quotes), if the $ i $ -th polyhedron in Anton's collection is a tetrahedron. - "Cube" (without quotes), if the $ i $ -th polyhedron in Anton's collection is a cube. - "Octahedron" (without quotes), if the $ i $ -th polyhedron in Anton's collection is an octahedron. - "Dodecahedron" (without quotes), if the $ i $ -th polyhedron in Anton's collection is a dodecahedron. - "Icosahedron" (without quotes), if the $ i $ -th polyhedron in Anton's collection is an icosahedron.
输出格式
Output one number — the total number of faces in all the polyhedrons in Anton's collection.
输入输出样例
输入样例 #1
4
Icosahedron
Cube
Tetrahedron
Dodecahedron
输出样例 #1
42
输入样例 #2
3
Dodecahedron
Octahedron
Octahedron
输出样例 #2
28