302472: CF476C. Dreamoon and Sums
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Dreamoon and Sums
题意翻译
给定$a,b(a,b\le10^7)$,求 $$\sum_x x\times [1\le\frac{\lfloor x/b\rfloor}{x\mod b}\le a]$$ 上式的中括号为艾佛森括号。 答案对$10^9+7$取模。题目描述
Dreamoon loves summing up something for no reason. One day he obtains two integers $ a $ and $ b $ occasionally. He wants to calculate the sum of all nice integers. Positive integer $ x $ is called nice if ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF476C/4c08c1c4aa605a7661ec02846fcac8a50385ec4f.png) and ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF476C/199c47ec051f565599e933f0f95a0d9069b4a2ef.png), where $ k $ is some integer number in range $ \[1,a\] $ . By ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF476C/f26b8897bea7b2ad070a91154fff6b5d3d6ecc9d.png) we denote the quotient of integer division of $ x $ and $ y $ . By ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF476C/e60b09b62a19a62f637ba6a66556f554bcb4dbf9.png) we denote the remainder of integer division of $ x $ and $ y $ . You can read more about these operations here: http://goo.gl/AcsXhT. The answer may be large, so please print its remainder modulo $ 1000000007 $ ( $ 10^{9}+7 $ ). Can you compute it faster than Dreamoon?输入输出格式
输入格式
The single line of the input contains two integers $ a $ , $ b $ ( $ 1<=a,b<=10^{7} $ ).
输出格式
Print a single integer representing the answer modulo $ 1000000007 $ ( $ 10^{9}+7 $ ).
输入输出样例
输入样例 #1
1 1
输出样例 #1
0
输入样例 #2
2 2
输出样例 #2
8