302168: CF413D. 2048
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
2048
题意翻译
有一个长为 $n$ 的数列,每一个元素都是 $2$,$4$ 或是 $0$。你想要把所有 $0$ 替换为 $2$ 或 $4$,你想知道有多少种替换方法,使得按照 $\tt2048$ 的规则合并后,最大的数超过了 $2^k$。答案对 $10^9+7$ 取模。 $\tt2048$ 合并规则是,依次向一个栈中压入数列中的所有元素。若某次压入的时候,栈顶的元素和即将压入的元素相同,则取出栈顶元素,与即将压入的元素合并为他们二倍的数,然后再将这个数压入栈。若此时还一样,则重复此过程。题目描述
The programmers from the R2 company love playing 2048. One day, they decided to invent their own simplified version of this game — $ 2^{k} $ on a stripe. Imagine an infinite in one direction stripe, consisting of unit squares (the side of each square is equal to the height of the stripe). Each square can either be empty or contain some number. Initially, all squares are empty. Then at infinity one of the unit squares number 2 or 4 appears. Then the player presses a button once, and the appeared number begins to move towards the beginning of the stripe. Let's assume that some number $ x $ moves to the beginning of the stripe, then it will stop if: 1. it either gets in the first square of the stripe; 2. or it is in the square that is preceded by a square with number $ y $ $ (y≠x) $ . But if number $ x $ at some point of time gets to the square with the same number then both numbers add to each other and result in $ 2x $ . The new number $ 2x $ continues moving to the beginning of the stripe by the same rules. After the final stop of the number moving process, the infinity gets a new number 2 or 4 and the process repeats. Read the notes to the test samples to better understand the moving strategy. I guess you've understood that the game progress fully depends on the order in which numbers 2 and 4 appear. Let's look at some sequence of numbers 2 and 4 in the game. We assume that the sequence is winning if it results in at least one square getting the number greater or equal than $ 2^{k} $ . The goal of the game is to make up a winning sequence of $ n $ numbers. But not everything is so simple, some numbers in the sequence are identified beforehand. You are given a sequence consisting of numbers 0, 2, 4. Count how many ways there are to replace each 0 of the sequence with 2 or 4 to get a winning sequence.输入输出格式
输入格式
The first line contains two integers $ n $ and $ k $ $ (1<=n<=2000; 3<=k<=11) $ . The next line contains sequence of $ n $ integers, each of them is either 0, or 2, or 4.
输出格式
Print a single integer — the number of ways to replace zeroes by numbers 2 or 4 to get a winning sequence. As this number can be rather large, print it modulo $ 1000000007 $ $ (10^{9}+7) $ .
输入输出样例
输入样例 #1
7 4
2 2 4 2 2 2 2
输出样例 #1
1
输入样例 #2
1 3
0
输出样例 #2
0
输入样例 #3
2 3
0 4
输出样例 #3
1
输入样例 #4
5 4
2 0 0 4 4
输出样例 #4
2