301857: CF351C. Jeff and Brackets

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Jeff and Brackets

题意翻译

构造一个长度为 $n*m$ 的合法括号序列。第 $i$ 个位置上的左括号代价为 $a_{i\mod n}$,有括号代价为 $b_{i\mod n}$。求最小代价。

题目描述

Jeff loves regular bracket sequences. Today Jeff is going to take a piece of paper and write out the regular bracket sequence, consisting of $ nm $ brackets. Let's number all brackets of this sequence from $ 0 $ to $ nm $ - $ 1 $ from left to right. Jeff knows that he is going to spend $ a_{i\ mod\ n} $ liters of ink on the $ i $ -th bracket of the sequence if he paints it opened and $ b_{i\ mod\ n} $ liters if he paints it closed. You've got sequences $ a $ , $ b $ and numbers $ n $ , $ m $ . What minimum amount of ink will Jeff need to paint a regular bracket sequence of length $ nm $ ? Operation $ x\ mod\ y $ means taking the remainder after dividing number $ x $ by number $ y $ .

输入输出格式

输入格式


The first line contains two integers $ n $ and $ m $ ( $ 1<=n<=20; 1<=m<=10^{7}; $ $ m $ is even). The next line contains $ n $ integers: $ a_{0} $ , $ a_{1} $ , $ ... $ , $ a_{n-1} $ $ (1<=a_{i}<=10) $ . The next line contains $ n $ integers: $ b_{0} $ , $ b_{1} $ , $ ... $ , $ b_{n-1} $ $ (1<=b_{i}<=10) $ . The numbers are separated by spaces.

输出格式


In a single line print the answer to the problem — the minimum required amount of ink in liters.

输入输出样例

输入样例 #1

2 6
1 2
2 1

输出样例 #1

12

输入样例 #2

1 10000000
2
3

输出样例 #2

25000000

说明

In the first test the optimal sequence is: $ ()()()()()() $ , the required number of ink liters is $ 12 $ .

Input

题意翻译

构造一个长度为 $n*m$ 的合法括号序列。第 $i$ 个位置上的左括号代价为 $a_{i\mod n}$,有括号代价为 $b_{i\mod n}$。求最小代价。

加入题单

上一题 下一题 算法标签: