301513: CF285E. Positions in Permutations

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Positions in Permutations

题意翻译

称一个 $1\sim n$ 的排列的完美数为有多少个 $i$ 满足 $|P_i-i|=1$ 。 求有多少个长度为 $n$ 的完美数恰好为 $m$ 的排列。答案对 $10^9+7$ 取模。 $1 \le n \le 1000,0 \le m \le n$。

题目描述

Permutation $ p $ is an ordered set of integers $ p_{1},p_{2},...,p_{n} $ , consisting of $ n $ distinct positive integers, each of them doesn't exceed $ n $ . We'll denote the $ i $ -th element of permutation $ p $ as $ p_{i} $ . We'll call number $ n $ the size or the length of permutation $ p_{1},p_{2},...,p_{n} $ . We'll call position $ i $ ( $ 1<=i<=n $ ) in permutation $ p_{1},p_{2},...,p_{n} $ good, if $ |p[i]-i|=1 $ . Count the number of permutations of size $ n $ with exactly $ k $ good positions. Print the answer modulo $ 1000000007 $ ( $ 10^{9}+7 $ ).

输入输出格式

输入格式


The single line contains two space-separated integers $ n $ and $ k $ ( $ 1<=n<=1000,0<=k<=n $ ).

输出格式


Print the number of permutations of length $ n $ with exactly $ k $ good positions modulo $ 1000000007 $ ( $ 10^{9}+7 $ ).

输入输出样例

输入样例 #1

1 0

输出样例 #1

1

输入样例 #2

2 1

输出样例 #2

0

输入样例 #3

3 2

输出样例 #3

4

输入样例 #4

4 1

输出样例 #4

6

输入样例 #5

7 4

输出样例 #5

328

说明

The only permutation of size 1 has 0 good positions. Permutation $ (1,2) $ has 0 good positions, and permutation $ (2,1) $ has 2 positions. Permutations of size 3: 1. $ (1,2,3) $ — 0 positions 2. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF285E/0be2e55cf7a19e2daea8429a422511a827d2e236.png) — 2 positions 3. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF285E/581bad7452cc25f3e2dca31dac99a205bf6361ef.png) — 2 positions 4. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF285E/aad15ec07c7621cca60c3be370547e4457323e38.png) — 2 positions 5. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF285E/b2a9b87daae026f62e110bd34347625817635c68.png) — 2 positions 6. $ (3,2,1) $ — 0 positions

Input

题意翻译

称一个 $1\sim n$ 的排列的完美数为有多少个 $i$ 满足 $|P_i-i|=1$ 。 求有多少个长度为 $n$ 的完美数恰好为 $m$ 的排列。答案对 $10^9+7$ 取模。 $1 \le n \le 1000,0 \le m \le n$。

加入题单

上一题 下一题 算法标签: