301513: CF285E. Positions in Permutations
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Positions in Permutations
题意翻译
称一个 $1\sim n$ 的排列的完美数为有多少个 $i$ 满足 $|P_i-i|=1$ 。 求有多少个长度为 $n$ 的完美数恰好为 $m$ 的排列。答案对 $10^9+7$ 取模。 $1 \le n \le 1000,0 \le m \le n$。题目描述
Permutation $ p $ is an ordered set of integers $ p_{1},p_{2},...,p_{n} $ , consisting of $ n $ distinct positive integers, each of them doesn't exceed $ n $ . We'll denote the $ i $ -th element of permutation $ p $ as $ p_{i} $ . We'll call number $ n $ the size or the length of permutation $ p_{1},p_{2},...,p_{n} $ . We'll call position $ i $ ( $ 1<=i<=n $ ) in permutation $ p_{1},p_{2},...,p_{n} $ good, if $ |p[i]-i|=1 $ . Count the number of permutations of size $ n $ with exactly $ k $ good positions. Print the answer modulo $ 1000000007 $ ( $ 10^{9}+7 $ ).输入输出格式
输入格式
The single line contains two space-separated integers $ n $ and $ k $ ( $ 1<=n<=1000,0<=k<=n $ ).
输出格式
Print the number of permutations of length $ n $ with exactly $ k $ good positions modulo $ 1000000007 $ ( $ 10^{9}+7 $ ).
输入输出样例
输入样例 #1
1 0
输出样例 #1
1
输入样例 #2
2 1
输出样例 #2
0
输入样例 #3
3 2
输出样例 #3
4
输入样例 #4
4 1
输出样例 #4
6
输入样例 #5
7 4
输出样例 #5
328