301266: CF237B. Young Table
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Young Table
题意翻译
# 题意 一张 $n$ 行的表格 $a$ ,编号从 $1$ 到 $n$ 。第 $i$ 行包含 $c_i$ 个单元格,且满足对所有的 $i\ (1 \lt i \le n)$ , $c_i \le c_{i - 1}$ 。 设 $s$ 为表格 $a$ 的单元格总数,即 $s = \sum_{i=1}^n c_i$ ,已知表格中所有单元格均包含一个属于 $1$ 到 $s$ 的与其他格不同的整数。 若假设第 $i$ 行的单元格编号从 $1$ 到 $c_i$ ,令其中第 $j$ 列的单元格为 $a_{i,j}$ ,你的任务是通过数次交换操作,使得该表格满足如下条件: 1. 对所有的 $i, j \ (1 \lt i \le n,1\le j \le c_i)$, 满足 $ a_{i,j} \gt a_{i-1,j}$ 2. 对所有的 $i, j \ (1 \le i \le n,1\lt j \le c_i)$, 满足 $ a_{i,j} \gt a_{i,j-1}$ 你应当使用少于 $s$ 次交换,但不必寻求最优。 # 输入 第一行一个整数 $n \ (1 \le n \le 50)$,行数。 第二行 $n$ 个整数 $c_i \ (1 \le c_i \le 50; c_i \le c_{i - 1}) $ ,空格间隔。 接下来 $n$ 行为此表格,第 $i$ 行 $c_i$ 个整数。 所有表格中的元素均为 $1$ 到 $s$ 中不同的正整数。不必检查输入 # 输出 第一行一个整数 $m$ 表示进行了 $m$ 次交换(不应超过 $s$ )。 接下来 $m$ 行每行四个整数 $x_i, y_i, p_i, q_i$ 表示交换了 $a_{x_i, y_i}$ 和 $a_{p_i, q_i}$ 。按执行顺序列写。题目描述
You've got table $ a $ , consisting of $ n $ rows, numbered from 1 to $ n $ . The $ i $ -th line of table $ a $ contains $ c_{i} $ cells, at that for all $ i $ $ (1<i<=n) $ holds $ c_{i}<=c_{i-1} $ . Let's denote $ s $ as the total number of cells of table $ a $ , that is, ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF237B/41032ee9d28de3347d7865d06640fb12d664cefb.png). We know that each cell of the table contains a single integer from $ 1 $ to $ s $ , at that all written integers are distinct. Let's assume that the cells of the $ i $ -th row of table $ a $ are numbered from 1 to $ c_{i} $ , then let's denote the number written in the $ j $ -th cell of the $ i $ -th row as $ a_{i,j} $ . Your task is to perform several swap operations to rearrange the numbers in the table so as to fulfill the following conditions: 1. for all $ i,j $ $ (1<i<=n; 1<=j<=c_{i}) $ holds $ a_{i,j}>a_{i-1,j} $ ; 2. for all $ i,j $ $ (1<=i<=n; 1<j<=c_{i}) $ holds $ a_{i,j}>a_{i,j-1} $ . In one swap operation you are allowed to choose two different cells of the table and swap the recorded there numbers, that is the number that was recorded in the first of the selected cells before the swap, is written in the second cell after it. Similarly, the number that was recorded in the second of the selected cells, is written in the first cell after the swap. Rearrange the numbers in the required manner. Note that you are allowed to perform any number of operations, but not more than $ s $ . You do not have to minimize the number of operations.输入输出格式
输入格式
The first line contains a single integer $ n $ $ (1<=n<=50) $ that shows the number of rows in the table. The second line contains $ n $ space-separated integers $ c_{i} $ $ (1<=c_{i}<=50; c_{i}<=c_{i-1}) $ — the numbers of cells on the corresponding rows. Next $ n $ lines contain table $ а $ . The $ i $ -th of them contains $ c_{i} $ space-separated integers: the $ j $ -th integer in this line represents $ a_{i,j} $ . It is guaranteed that all the given numbers $ a_{i,j} $ are positive and do not exceed $ s $ . It is guaranteed that all $ a_{i,j} $ are distinct.
输出格式
In the first line print a single integer $ m $ $ (0<=m<=s) $ , representing the number of performed swaps. In the next $ m $ lines print the description of these swap operations. In the $ i $ -th line print four space-separated integers $ x_{i},y_{i},p_{i},q_{i} $ $ (1<=x_{i},p_{i}<=n; 1<=y_{i}<=c_{xi}; 1<=q_{i}<=c_{pi}) $ . The printed numbers denote swapping the contents of cells $ a_{xi},y_{i} $ and $ a_{pi},q_{i} $ . Note that a swap operation can change the contents of distinct table cells. Print the swaps in the order, in which they should be executed.
输入输出样例
输入样例 #1
3
3 2 1
4 3 5
6 1
2
输出样例 #1
2
1 1 2 2
2 1 3 1
输入样例 #2
1
4
4 3 2 1
输出样例 #2
2
1 1 1 4
1 2 1 3