300663: CF126D. Fibonacci Sums
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Fibonacci Sums
题意翻译
计算一个整数被分解成若干个各不相等的Fibonacci数列中的数的方案; 每个测试点有多个数据; 输入:第一行有一个整数n,n<=1e5,之后第2行至第n+1行每行一个整数。表示需要计算被分解的方案的整数;每个整数的范围均属于[1,1e18]; 输出:共n行,每行一个整数,表示对应的整数被分解的方案总数 感谢@daifucong 提供的翻译题目描述
Fibonacci numbers have the following form: $ F_{1}=1, $ $ F_{2}=2, $ $ F_{i}=F_{i-1}+F_{i-2},i>2. $ Let's consider some non-empty set $ S={s_{1},s_{2},...,s_{k}} $ , consisting of different Fibonacci numbers. Let's find the sum of values of this set's elements: ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF126D/5ab7141541105d7a2a0738fb86760948628a7a20.png)Let's call the set $ S $ a number $ n $ 's decomposition into Fibonacci sum. It's easy to see that several numbers have several decompositions into Fibonacci sum. For example, for $ 13 $ we have $ 13,5+8,2+3+8 $ — three decompositions, and for $ 16 $ : $ 3+13,1+2+13,3+5+8,1+2+5+8 $ — four decompositions. By the given number $ n $ determine the number of its possible different decompositions into Fibonacci sum.输入输出格式
输入格式
The first line contains an integer $ t $ — the number of tests ( $ 1<=t<=10^{5} $ ). Each of the following $ t $ lines contains one test. Each test is an integer $ n $ ( $ 1<=n<=10^{18} $ ). Please do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specificator.
输出格式
For each input data test print a single number on a single line — the answer to the problem.
输入输出样例
输入样例 #1
2
13
16
输出样例 #1
3
4