201493: [AtCoder]ARC149 D - Simultaneous Sugoroku

Memory Limit:1024 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $700$ points

Problem Statement

There are $N$ pieces placed at integer coordinates on a number line. The coordinate of the $i$-th piece is $X_i$.

Let us move these pieces $M$ times as follows.

  • In the $i$-th move, given a positive integer $D_i$, we move each piece as follows.
    • A piece whose coordinate is a negative integer is moved a distance of $D_i$ in the positive direction.
    • A piece whose coordinate is $0$ is not moved.
    • A piece whose coordinate is a positive integer is moved a distance of $D_i$ in the negative direction.

Determine whether each piece arrives at the origin. If it does, print the number of moves after which it arrives there for the first time. Otherwise, print its coordinate after the $M$ moves.

Constraints

  • $1\leq N\leq 3\times 10^5$
  • $1\leq M\leq 3\times 10^5$
  • $1\leq X_1 < \cdots < X_N \leq 10^6$
  • $1\leq D_i \leq 10^6$

Input

The input is given from Standard Input in the following format:

$N$ $M$
$X_1$ $\ldots$ $X_N$
$D_1$ $\ldots$ $D_M$

Output

Print $N$ lines. The $i$-th line should describe the $i$-th piece in the following format.

If the piece arrives at the origin, let $x$ be the number of moves after which it arrives there for the first time, and print the following:

Yes $x$

If the piece does not arrive at the origin, let $x$ be its coordinate after the $M$ moves, and print the following:

No $x$

Sample Input 1

6 4
2 4 6 8 10 12
8 2 5 7

Sample Output 1

No -6
No -4
Yes 2
Yes 1
Yes 2
No 4

The coordinate of each piece changes as follows.

  • The $1$-st piece: $\phantom{0}2\quad \longmapsto \quad -6\quad \longmapsto \quad -4\quad \longmapsto \quad \phantom{-}1 \quad \longmapsto \quad -6$.
  • The $2$-nd piece: $\phantom{0}4 \quad \longmapsto \quad -4\quad \longmapsto \quad -2 \quad \longmapsto \quad \phantom{-}3 \quad \longmapsto \quad -4$.
  • The $3$-rd piece: $\phantom{0}6 \quad \longmapsto \quad -2\quad \longmapsto \quad \phantom{-}0 \quad \longmapsto \quad \phantom{-}0 \quad \longmapsto \quad \phantom{-}0$.
  • The $4$-th piece: $\phantom{0}8 \quad \longmapsto \quad \phantom{-}0\quad \longmapsto \quad \phantom{-}0 \quad \longmapsto \quad \phantom{-}0 \quad \longmapsto \quad \phantom{-}0$.
  • The $5$-th piece: $10 \quad \longmapsto \quad \phantom{-}2\quad \longmapsto \quad \phantom{-}0 \quad \longmapsto \quad \phantom{-}0 \quad \longmapsto \quad \phantom{-}0$.
  • The $6$-th piece: $12 \quad \longmapsto \quad \phantom{-}4\quad \longmapsto \quad \phantom{-}2 \quad \longmapsto \quad -3 \quad \longmapsto \quad \phantom{-}4$.

Input

题意翻译

给定一个数轴,上面有 $n$ 个点 $x_1,x_2,…,x_n$ ,你需要对每一个点进行 $M$ 次移动,规则如下:\ 对于每个 $x_i$ :\ 若其坐标 $>0$,向负方向移动 $D$ 个单位;\ 若其坐标 $=0$,停止移动;\ 若其坐标 $<0$,向正方向移动 $D$ 各单位。 你需要判断每个点是否会到达原点,\ 是:输出 "Yes" ,然后输出它使用了几次移动;\ 否:输出 "No" ,然后输出它 $M$ 次移动后的坐标。

加入题单

上一题 下一题 算法标签: