201455: [AtCoder]ARC145 F - Modulo Sum of Increasing Sequences

Memory Limit:1024 MB Time Limit:4 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $1200$ points

Problem Statement

Find the number, modulo $998244353$, of non-decreasing sequences $A=(A_1,A_2,\ldots,A_N)$ of length $N$ consisting of integers between $0$ and $M$ (inclusive) that satisfy the following, for each $K=0,1,\ldots,\mathrm{MOD}-1$:

  • the sum of the elements in $A$ is congruent to $K$ modulo $\mathrm{MOD}$.
What is a non-decreasing sequence? A sequence $B$ is non-decreasing if and only if $B_i \leq B_{i+1}$ for every integer ($1 \le i \le |B| - 1$), where $|B|$ is the length of $B$.

Constraints

  • $1 \leq N ,M\leq 10^6$
  • $1\leq \mathrm{MOD}\leq 500$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $M$ $\mathrm{MOD}$

Output

For each $K=0,1,\ldots,\mathrm{MOD}-1$, print the number, modulo $998244353$, of sequences that satisfy the condition.


Sample Input 1

2 2 4

Sample Output 1

2 1 2 1

There are $6$ non-decreasing sequences of length $2$ consisting of integers between $0$ and $2$: $(0, 0), (0, 1),(0,2), (1,1),(1,2),(2,2)$. Here, we have:

  • $2$ sequences whose sums are congruent to $0$ modulo $4$: $(0,0),(2,2)$;

  • $1$ sequence whose sum is congruent to $1$ modulo $4$: $(0,1)$;

  • $2$ sequences whose sums are congruent to $2$ modulo $4$: $(0,2),(1,1)$;

  • $1$ sequence whose sum is congruent to $3$ modulo $4$: $(1,2)$.


Sample Input 2

3 45 3

Sample Output 2

5776 5760 5760

Sample Input 3

1000000 1000000 6

Sample Output 3

340418986 783857865 191848859 783857865 340418986 635287738

Print the counts modulo $998244353$.

Input

题意翻译

- 对于每个 $0\le k<mod$ 的整数 $k$,求出长度为 $n$,值域为 $[0,m]$ 且满足 $\sum_{i=1}^na_i\equiv k\pmod{mod}$ 的序列 $a$ 的个数。$a$ 是单调不减序列。 - $1\le n,m\le10^6$,$1\le mod\le500$,答案对 $998244353$ 取模。

加入题单

上一题 下一题 算法标签: