201445: [AtCoder]ARC144 F - Arithmetic Sequence Nim
Description
Score : $900$ points
Problem Statement
You are given a positive integer $m$, a non-negative integer $a$ ($0\leq a < m$), and a sequence of positive integers $A = (A_1, \ldots, A_N)$.
A set $X$ of positive integers is defined as $X = \{x>0\mid x\equiv a \pmod{m}\}$.
Alice and Bob will play a game against each other. They will alternate turns performing the following operation, with Alice going first:
- Choose a pair $(i,x)$ of an index $i$ ($1\leq i\leq N$) and a positite integer $x\in X$ such that $x\leq A_i$. Change $A_i$ to $A_i - x$. If there is no such $(i, x)$, the current player loses and the game ends.
Find the number, modulo $998244353$, of pairs $(i, x)$ that Alice can choose in her first turn so that she wins if both players play optimally in subsequent turns.
Constraints
- $1\leq N\leq 3\times 10^5$
- $0\leq a < m\leq 10^9$
- $\max(1, a) \leq A_i\leq 10^{18}$
Input
Input is given from Standard Input in the following format:
$N$ $m$ $a$ $A_1$ $A_2$ $\ldots$ $A_N$
Output
Print the number, modulo $998244353$, of pairs $(i, x)$ that Alice can choose in her first turn so that she wins if both players play optimally in subsequent turns.
Sample Input 1
3 1 0 5 6 7
Sample Output 1
3
We have $X = \{1, 2, 3, 4, 5, \ldots\}$. Three pairs $(i,x)$ satisfy the condition: $(1,4)$, $(2,4)$, $(3,4)$.
Sample Input 2
5 10 3 5 9 18 23 27
Sample Output 2
3
We have $X = \{3, 13, 23, 33, 43, \ldots\}$. Three pairs $(i,x)$ satisfy the condition: $(4,23)$, $(5,3)$, $(5,13)$.
Sample Input 3
4 10 8 100 101 102 103
Sample Output 3
0
Alice cannot win even if she plays optimally. Thus, zero pairs $(i,x)$ satisfy the condition.
Sample Input 4
5 2 1 111111111111111 222222222222222 333333333333333 444444444444444 555555555555555
Sample Output 4
943937640
$833333333333334$ pairs $(i,x)$ satisfy the condition. Print the count modulo $998244353$.