201440: [AtCoder]ARC144 A - Digit Sum of 2x
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $300$ points
Problem Statement
For a positive integer $x$, let $f(x)$ be the sum of its digit. For example, $f(144) = 1+4+4 = 9$ and $f(1)=1$.
You are given a positive integer $N$. Find the following positive integers $M$ and $x$:
- The maximum positive integer $M$ for which there exists a positive integer $x$ such that $f(x)=N$ and $f(2x)=M$.
- The minimum positive integer $x$ such that $f(x)=N$ and $f(2x)=M$ for the $M$ above.
Constraints
- $1\leq N\leq 10^5$
Input
Input is given from Standard Input in the following format:
$N$
Output
Print $M$ in the first line and $x$ in the second line.
Sample Input 1
3
Sample Output 1
6 3
We can prove that whenever $f(x)=3$, $f(2x) = 6$. Thus, $M=6$. The minimum positive integer $x$ such that $f(x)=3$ and $f(2x)=6$ is $x=3$. These $M$ and $x$ should be printed.
Sample Input 2
6
Sample Output 2
12 24
Sample Input 3
100
Sample Output 3
200 4444444444444444444444444