201363: [AtCoder]ARC136 D - Without Carry
Memory Limit:1024 MB
Time Limit:4 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $600$ points
Problem Statement
You are given an integer sequence of length $N$: $A=(A_1,A_2,\cdots,A_N)$.
Find the number of pairs of integers $(i,j)$ ($1 \leq i < j \leq N$) such that calculation of $A_i+A_j$ by column addition does not involve carrying.
Constraints
- $2 \leq N \leq 10^6$
- $0 \leq A_i \leq 10^6-1$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $A_1$ $A_2$ $\cdots$ $A_N$
Output
Print the answer.
Sample Input 1
4 4 8 12 90
Sample Output 1
3
The pairs $(i,j)$ that count are $(1,3),(1,4),(2,4)$.
For example, calculation of $A_1+A_3=4+12$ does not involve carrying, so $(i,j)=(1,3)$ counts. On the other hand, calculation of $A_3+A_4=12+90$ involves carrying, so $(i,j)=(3,4)$ does not count.
Sample Input 2
20 313923 246114 271842 371982 284858 10674 532090 593483 185123 364245 665161 241644 604914 645577 410849 387586 732231 952593 249651 36908
Sample Output 2
6
Sample Input 3
5 1 1 1 1 1
Sample Output 3
10