201354: [AtCoder]ARC135 E - Sequence of Multiples

Memory Limit:1024 MB Time Limit:6 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $800$ points

Problem Statement

You are given integers $N$ and $X$. Assume that an integer sequence $A = (A_1, \ldots, A_N)$ satisfies all of the conditions below.

  • $A_1 = X$.
  • For every $i$ ($1\leq i\leq N$), $A_i$ is a multiple of $i$.
  • $A$ is strictly increasing. In other words, $A_1 < \cdots < A_N$ holds.

Find the minimum possible value of $\sum_{i=1}^N A_i$, modulo $998244353$.

There are $T$ test cases, each of which should be solved.

Constraints

  • $1\leq T\leq 10$
  • $1\leq N \leq 10^{18}$
  • $1\leq X \leq 10^{18}$

Input

Input is given from Standard Input from the following format:

$T$
$\text{case}_1$
$\vdots$
$\text{case}_T$

Each case is in the following format:

$N$ $X$

Output

Print $T$ lines. The $i$-th line should contain the answer for $\text{case}_i$.


Sample Input 1

5
5 100
1 10
10 1
1000000000000000000 1
100 100

Sample Output 1

525
10
55
75433847
61074

Here is a sequence $A$ that minimizes $\sum_{i=1}^N A_i$ for each of the first three test cases.

  • The first test case: $A = (100, 102, 105, 108, 110)$.
  • The second test case: $A = (10)$.
  • The third test case: $A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)$.

Input

题意翻译

给定 $n,x$。 你需要求出数列 $A_{1\sim n}$ 满足: 1. $A_1=x$; 1. $A_i<A_{i+1}$,$1\le i<n$; 1. $A_i$ 是 $i$ 的倍数。 求 $\sum_{i=1}^n A_i$ 的最小值。 $n,x\le 10^{18}$,多组询问,$T\le 10$。

加入题单

上一题 下一题 算法标签: