201333: [AtCoder]ARC133 D - Range XOR
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $700$ points
Problem Statement
Given are integers $L$, $R$, and $V$. Find the number of pairs of integers $(l,r)$ that satisfy both of the conditions below, modulo $998244353$.
- $L \leq l \leq r \leq R$
- $l \oplus (l+1) \oplus \cdots \oplus r=V$
Here, $\oplus$ denotes the bitwise $\mathrm{XOR}$ operation.
What is bitwise $\mathrm{XOR}$?
The bitwise $\mathrm{XOR}$ of non-negative integers $A$ and $B$, $A \oplus B$, is defined as follows:
- When $A \oplus B$ is written in base two, the digit in the $2^k$'s place ($k \geq 0$) is $1$ if exactly one of $A$ and $B$ is $1$, and $0$ otherwise.
Generally, the bitwise $\mathrm{XOR}$ of $k$ integers $p_1, p_2, p_3, \dots, p_k$ is defined as $(\dots ((p_1 \oplus p_2) \oplus p_3) \oplus \dots \oplus p_k)$. We can prove that this value does not depend on the order of $p_1, p_2, p_3, \dots p_k$.
Constraints
- $1 \leq L \leq R \leq 10^{18}$
- $0 \leq V \leq 10^{18}$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$L$ $R$ $V$
Output
Print the answer.
Sample Input 1
1 3 3
Sample Output 1
2
The two pairs satisfying the conditions are $(l,r)=(1,2)$ and $(l,r)=(3,3)$.
Sample Input 2
10 20 0
Sample Output 2
6
Sample Input 3
1 1 1
Sample Output 3
1
Sample Input 4
12345 56789 34567
Sample Output 4
16950