201282: [AtCoder]ARC128 C - Max Dot
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $600$ points
Problem Statement
Given are integers $N$, $M$, $S$, and a sequence of $N$ integers $A=(A_1,A_2,\cdots,A_N)$.
Consider making a sequence of $N$ non-negative real numbers $x=(x_1,x_2,\cdots,x_N)$ satisfying all of the following conditions:
- $0 \leq x_1 \leq x_2 \leq \cdots \leq x_N \leq M$,
- $\sum_{1 \leq i \leq N} x_i=S$.
Now, let us define the score of $x$ as $\sum_{1 \leq i \leq N} A_i \times x_i$. Find the maximum possible score of $x$.
Constraints
- $1 \leq N \leq 5000$
- $1 \leq M \leq 10^6$
- $1 \leq S \leq \min(N \times M,10^6)$
- $1 \leq A_i \leq 10^6$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $M$ $S$ $A_1$ $A_2$ $\cdots$ $A_N$
Constraints
Print the answer. Your output will be considered correct if its absolute or relative error is at most $10^{-6}$.
Sample Input 1
3 2 3 1 2 3
Sample Output 1
8.00000000000000000000
The optimal choice is $x=(0,1,2)$.
Sample Input 2
3 3 2 5 1 1
Sample Output 2
4.66666666666666666667
The optimal choice is $x=(2/3,2/3,2/3)$.
Sample Input 3
10 234567 1000000 353239 53676 45485 617014 886590 423581 172670 928532 312338 981241
Sample Output 3
676780145098.25000000000000000000