201110: [AtCoder]ARC111 A - Simple Math 2
Memory Limit:1024 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $300$ points
Problem Statement
Given positive integers $N$ and $M$, find the remainder when $\lfloor \frac{10^N}{M} \rfloor$ is divided by $M$.
What is $\lfloor x \rfloor$?
$\lfloor x \rfloor$ denotes the greatest integer not exceeding $x$. For example:- $\lfloor 2.5 \rfloor = 2$
- $\lfloor 3 \rfloor = 3$
- $\lfloor 9.9999999 \rfloor = 9$
- $\lfloor \frac{100}{3} \rfloor = \lfloor 33.33... \rfloor = 33$
Constraints
- $1 \leq N \leq 10^{18}$
- $1 \leq M \leq 10000$
Input
Input is given from Standard Input in the following format:
$N$ $M$
Output
Print the answer.
Sample Input 1
1 2
Sample Output 1
1
We have $\lfloor \frac{10^1}{2} \rfloor = 5$, so we should print the remainder when $5$ is divided by $2$, that is, $1$.
Sample Input 2
2 7
Sample Output 2
0
Sample Input 3
1000000000000000000 9997
Sample Output 3
9015