201011: [AtCoder]ARC101 D - Median of Medians

Memory Limit:1024 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $700$ points

Problem Statement

We will define the median of a sequence $b$ of length $M$, as follows:

  • Let $b'$ be the sequence obtained by sorting $b$ in non-decreasing order. Then, the value of the $(M / 2 + 1)$-th element of $b'$ is the median of $b$. Here, $/$ is integer division, rounding down.

For example, the median of $(10, 30, 20)$ is $20$; the median of $(10, 30, 20, 40)$ is $30$; the median of $(10, 10, 10, 20, 30)$ is $10$.

Snuke comes up with the following problem.

You are given a sequence $a$ of length $N$. For each pair $(l, r)$ ($1 \leq l \leq r \leq N$), let $m_{l, r}$ be the median of the contiguous subsequence $(a_l, a_{l + 1}, ..., a_r)$ of $a$. We will list $m_{l, r}$ for all pairs $(l, r)$ to create a new sequence $m$. Find the median of $m$.

Constraints

  • $1 \leq N \leq 10^5$
  • $a_i$ is an integer.
  • $1 \leq a_i \leq 10^9$

Input

Input is given from Standard Input in the following format:

$N$
$a_1$ $a_2$ $...$ $a_N$

Output

Print the median of $m$.


Sample Input 1

3
10 30 20

Sample Output 1

30

The median of each contiguous subsequence of $a$ is as follows:

  • The median of $(10)$ is $10$.
  • The median of $(30)$ is $30$.
  • The median of $(20)$ is $20$.
  • The median of $(10, 30)$ is $30$.
  • The median of $(30, 20)$ is $30$.
  • The median of $(10, 30, 20)$ is $20$.

Thus, $m = (10, 30, 20, 30, 30, 20)$ and the median of $m$ is $30$.


Sample Input 2

1
10

Sample Output 2

10

Sample Input 3

10
5 9 5 9 8 9 3 5 4 3

Sample Output 3

8

Input

题意翻译

## 题目描述 定义一个长度为 $M$ 的序列的中位数为这个序列中第 $\lfloor\frac M 2\rfloor + 1$ 小的数。 现在有一个长度为 $N$ 的序列 $A$,将 $A$ 的所有子段的中位数取出来作为一个序列 $S$,问序列 $S$ 的中位数是多少。 ## 说明/限制 $\begin{array}{l}1\le N\le 10^5\\1\le A_i\le 10^9\end{array}$ **样例1解释** 所有可能的子段为 $[10],[30],[20],[10,30],[30,20],[10,30,20]$,它们的中位数分别为 $10,30,20,30,30,20$,而 $[10,30,20,30,30,20]$ 的中位数为 $30$,因此答案为 $30$。

加入题单

上一题 下一题 算法标签: