200903: [AtCoder]ARC090 F - Number of Digits
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $900$ points
Problem Statement
For a positive integer $n$, let us define $f(n)$ as the number of digits in base $10$.
You are given an integer $S$. Count the number of the pairs of positive integers $(l, r)$ ($l \leq r$) such that $f(l) + f(l + 1) + ... + f(r) = S$, and find the count modulo $10^9 + 7$.
Constraints
- $1 \leq S \leq 10^8$
Input
Input is given from Standard Input in the following format:
$S$
Output
Print the answer.
Sample Input 1
1
Sample Output 1
9
There are nine pairs $(l, r)$ that satisfies the condition: $(1, 1)$, $(2, 2)$, $...$, $(9, 9)$.
Sample Input 2
2
Sample Output 2
98
There are $98$ pairs $(l, r)$ that satisfies the condition, such as $(1, 2)$ and $(33, 33)$.
Sample Input 3
123
Sample Output 3
460191684
Sample Input 4
36018
Sample Output 4
966522825
Sample Input 5
1000
Sample Output 5
184984484