200673: [AtCoder]ARC067 F - Yakiniku Restaurants

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $1000$ points

Problem Statement

There are $N$ barbecue restaurants along a street. The restaurants are numbered $1$ through $N$ from west to east, and the distance between restaurant $i$ and restaurant $i+1$ is $A_i$.

Joisino has $M$ tickets, numbered $1$ through $M$. Every barbecue restaurant offers barbecue meals in exchange for these tickets. Restaurant $i$ offers a meal of deliciousness $B_{i,j}$ in exchange for ticket $j$. Each ticket can only be used once, but any number of tickets can be used at a restaurant.

Joisino wants to have $M$ barbecue meals by starting from a restaurant of her choice, then repeatedly traveling to another barbecue restaurant and using unused tickets at the restaurant at her current location. Her eventual happiness is calculated by the following formula: "(The total deliciousness of the meals eaten) - (The total distance traveled)". Find her maximum possible eventual happiness.

Constraints

  • All input values are integers.
  • $2≤N≤5×10^3$
  • $1≤M≤200$
  • $1≤A_i≤10^9$
  • $1≤B_{i,j}≤10^9$

Input

The input is given from Standard Input in the following format:

$N$ $M$
$A_1$ $A_2$ $...$ $A_{N-1}$
$B_{1,1}$ $B_{1,2}$ $...$ $B_{1,M}$
$B_{2,1}$ $B_{2,2}$ $...$ $B_{2,M}$
$:$
$B_{N,1}$ $B_{N,2}$ $...$ $B_{N,M}$

Output

Print Joisino's maximum possible eventual happiness.


Sample Input 1

3 4
1 4
2 2 5 1
1 3 3 2
2 2 5 1

Sample Output 1

11

The eventual happiness can be maximized by the following strategy: start from restaurant $1$ and use tickets $1$ and $3$, then move to restaurant $2$ and use tickets $2$ and $4$.


Sample Input 2

5 3
1 2 3 4
10 1 1
1 1 1
1 10 1
1 1 1
1 1 10

Sample Output 2

20

Input

题意翻译

## 题目描述 有编号从 $ 1 $ 到 $ N $ 的 $ N $ 家烧烤店,烧烤店在一条线上按照编号顺序排序,第 $ i $ 家烧烤店与第 $ i + 1 $ 家烧烤店的距离是 $ A_i $ 。 你有编号从 $ 1 $ 到 $ M $ 的 $ M $ 张烧烤券,不管是在哪一家烧烤店都可用烧烤券来吃烧烤,在第 $ i $ 家烧烤店用烧烤券 $ j $ 可以吃到一顿美味度为 $ B_{i,j} $ 的烧烤,每一张烧烤券只能使用一次,但是在一家烧烤店你可以使用任意多张烧烤券。 你想从自己选择的一家烧烤店开始(随意选择一个开始),然后不断地用未使用的烧烤券去另一家烧烤店。你最终的幸福值是所吃所有烧烤的美味度减去所走的总路程。求最大可能的最终幸福值( $ M $ 张券必须用完)。 ## 输入输出格式 **输入格式** 第一行两个整数 $ N $ , $ M $ ; 第二行有 $ N - 1 $ 个整数, $ A_1 , A_2 , ... , A_{n-1} $ ; 接下来的 $ N $ 行,每行 $ M $ 个整数,第 $ i $ 行第 $ j $ 列的整数是 $ B_{i,j} $ ; ## 说明 数据范围: 输入的数字都是整数 $ 2 \leq N \leq 5 \times 10^3 $ $ 1 \leq M \leq 200 $ $ 1 \leq A_i \leq 10^9 $ $ 1 \leq B_{i,j} \leq 10^9 $ 样例解释: 样例1: 在第一家烧烤店开始,使用第1张和第3张券,然后去第二家烧烤店,使用第2张和第4张券。

加入题单

上一题 下一题 算法标签: