103725: [Atcoder]ABC372 F - Teleporting Takahashi 2
Description
Score : $525$ points
Problem Statement
There is a simple directed graph $G$ with $N$ vertices and $N+M$ edges. The vertices are numbered $1$ to $N$, and the edges are numbered $1$ to $N+M$.
Edge $i$ goes from vertex $i$ to vertex $i+1$. (Here, vertex $N+1$ is considered as vertex $1$.)
Edge $N+i$ $(1 \leq i \leq M)$ goes from vertex $X_i$ to vertex $Y_i$.
Takahashi is at vertex $1$. At each vertex, he can move to any vertex to which there is an outgoing edge from the current vertex.
Compute the number of ways he can move exactly $K$ times.
That is, find the number of integer sequences $(v_0, v_1, \dots, v_K)$ of length $K+1$ satisfying all of the following three conditions:
- $1 \leq v_i \leq N$ for $i = 0, 1, \dots, K$.
- $v_0 = 1$.
- There is a directed edge from vertex $v_{i-1}$ to vertex $v_i$ for $i = 1, 2, \ldots, K$.
Since this number can be very large, print it modulo $998244353$.
Constraints
- $2 \leq N \leq 2 \times 10^5$
- $0 \leq M \leq 50$
- $1 \leq K \leq 2 \times 10^5$
- $1 \leq X_i, Y_i \leq N$, $X_i \neq Y_i$
- All of the $N+M$ directed edges are distinct.
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $M$ $K$ $X_1$ $Y_1$ $X_2$ $Y_2$ $\vdots$ $X_M$ $Y_M$
Output
Print the count modulo $998244353$.
Sample Input 1
6 2 5 1 4 2 5
Sample Output 1
5
The above figure represents the graph $G$. There are five ways for Takahashi to move:
- Vertex $1 \to$ Vertex $2 \to$ Vertex $3 \to$ Vertex $4 \to$ Vertex $5 \to$ Vertex $6$
- Vertex $1 \to$ Vertex $2 \to$ Vertex $5 \to$ Vertex $6 \to$ Vertex $1 \to$ Vertex $2$
- Vertex $1 \to$ Vertex $2 \to$ Vertex $5 \to$ Vertex $6 \to$ Vertex $1 \to$ Vertex $4$
- Vertex $1 \to$ Vertex $4 \to$ Vertex $5 \to$ Vertex $6 \to$ Vertex $1 \to$ Vertex $2$
- Vertex $1 \to$ Vertex $4 \to$ Vertex $5 \to$ Vertex $6 \to$ Vertex $1 \to$ Vertex $4$
Sample Input 2
10 0 200000
Sample Output 2
1
Sample Input 3
199 10 1326 122 39 142 49 164 119 197 127 188 145 69 80 6 120 24 160 18 154 185 27
Sample Output 3
451022766
Output
得分:525分
问题陈述
有一个简单的有向图$G$,有$N$个顶点和$N+M$条边。顶点编号为$1$到$N$,边编号为$1$到$N+M$。
边$i$从顶点$i$到顶点$i+1$。(这里的顶点$N+1$被认为是顶点$1$。)
边$N+i$ $(1 \leq i \leq M)$从顶点$X_i$到顶点$Y_i$。
高桥位于顶点$1$。在每个顶点,他可以移动到当前顶点有任何出边的任何顶点。
计算他恰好移动$K$次的方案数。
即,找到长度为$K+1$的整数序列$(v_0, v_1, \dots, v_K)$,满足以下三个条件:
- $1 \leq v_i \leq N$ 对于$i = 0, 1, \dots, K$。
- $v_0 = 1$。
- 对于$i = 1, 2, \ldots, K$,存在从顶点$v_{i-1}$到顶点$v_i$的有向边。
由于这个数字可能非常大,以$998244353$为模打印它。
约束条件
- $2 \leq N \leq 2 \times 10^5$
- $0 \leq M \leq 50$
- $1 \leq K \leq 2 \times 10^5$
- $1 \leq X_i, Y_i \leq N$,$X_i \neq Y_i$
- 所有的$N+M$条有向边都是不同的。
- 所有输入值都是整数。
输入
输入从标准输入以下格式给出:
$N$ $M$ $K$ $X_1$ $Y_1$ $X_2$ $Y_2$ $\vdots$ $X_M$ $Y_M$
输出
打印计数模$998244353$。
样本输入 1
6 2 5 1 4 2 5
样本输出 1
5
上面的图形表示了图$G$。高桥有五种移动方式:
- 顶点$1 \to$ 顶点$2 \to$ 顶点$3 \to$ 顶点$4 \to$ 顶点$5 \to$ 顶点$6$
- 顶点$1 \to$ 顶点$2 \to$ 顶点$5 \to$ 顶点$6 \to$ 顶点$1 \to$ 顶点$2$
- 顶点$1 \to$ 顶点$2 \to$ 顶点$5 \to$ 顶点$6 \to$ 顶点$1 \to$ 顶点$4$
- 顶点$1 \to$ 顶点$4 \to$ 顶点$5 \to$ 顶点$6 \to$ 顶点$1 \to$ 顶点$2$
- 顶点$1 \to$ 顶点$4 \to$ 顶点$5 \to$ 顶点$6 \to$ 顶点$1 \to$ 顶点$4$