103715: [Atcoder]ABC371 F - Takahashi in Narrow Road
Description
Score : $550$ points
Problem Statement
There is a road extending east and west, and $N$ persons are on the road. The road extends infinitely long to the east and west from a point called the origin.
The $i$-th person $(1\leq i\leq N)$ is initially at a position $X_i$ meters east from the origin.
The persons can move along the road to the east or west. Specifically, they can perform the following movement any number of times.
- Choose one person. If there is no other person at the destination, move the chosen person $1$ meter east or west.
They have $Q$ tasks in total, and the $i$-th task $(1\leq i\leq Q)$ is as follows.
- The $T_i$-th person arrives at coordinate $G_i$.
Find the minimum total number of movements required to complete all $Q$ tasks in order.
Constraints
- $1\leq N\leq2\times10^5$
- $0\leq X_1 < X_2 < \dotsb < X_N \leq10^8$
- $1\leq Q\leq2\times10^5$
- $1\leq T_i\leq N\ (1\leq i\leq Q)$
- $0\leq G_i\leq10^8\ (1\leq i\leq Q)$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $X_1$ $X_2$ $\ldots$ $X_N$ $Q$ $T_1$ $G_1$ $T_2$ $G_2$ $\vdots$ $T_Q$ $G_Q$
Output
Print the answer.
Sample Input 1
5 10 20 30 40 50 4 3 45 4 20 1 35 2 60
Sample Output 1
239
An optimal sequence of movements for the persons is as follows (the positions of the persons are not necessarily drawn to scale):
For each task, the persons move as follows.
- The 4th person moves $6$ steps east, and the 3rd person moves $15$ steps east.
- The 2nd person moves $2$ steps west, the 3rd person moves $26$ steps west, and the 4th person moves $26$ steps west.
- The 4th person moves $18$ steps east, the 3rd person moves $18$ steps east, the 2nd person moves $18$ steps east, and the 1st person moves $25$ steps east.
- The 5th person moves $13$ steps east, the 4th person moves $24$ steps east, the 3rd person moves $24$ steps east, and the 2nd person moves $24$ steps east.
The total number of movements is $21+54+79+85=239$.
You cannot complete all tasks with a total movement count of $238$ or less, so print 239
.
Sample Input 2
8 0 1 2 3 4 5 6 100000000 6 1 100000000 8 0 1 100000000 8 4 1 100000000 5 21006578
Sample Output 2
4294967297
Note that some persons may need to move to the west of the origin or more than $10^8$ meters to the east of it.
Also, note that the answer may exceed $2^{32}$.
Sample Input 3
12 1558 3536 3755 3881 4042 4657 5062 7558 7721 8330 8542 9845 8 9 1694 7 3296 12 5299 5 5195 5 5871 1 2491 8 1149 8 2996
Sample Output 3
89644
Output
得分:550分
问题陈述
有一条东西向延伸的道路,道路上共有$N$个人。 道路从被称为原点的位置向东和向西无限延伸。
第$i$个人$(1\leq i\leq N)$最初位于原点东边$X_i$米的位置。
人们可以在道路上向东或向西移动。 具体来说,他们可以进行以下任意次数的移动。
- 选择一个人。如果没有其他人在目的地,则将选择的人移动1米向东或向西。
他们总共有$Q$个任务,第$i$个任务$(1\leq i\leq Q)$如下。
- 第$T_i$个人到达坐标$G_i$。
按顺序完成所有$Q$任务所需的最小总移动次数。
约束条件
- $1\leq N\leq2\times10^5$
- $0\leq X_1 < X_2 < \dotsb < X_N \leq10^8$
- $1\leq Q\leq2\times10^5$
- $1\leq T_i\leq N\ (1\leq i\leq Q)$
- $0\leq G_i\leq10^8\ (1\leq i\leq Q)$
- 所有输入值都是整数。
输入
输入从标准输入以下格式给出:
$N$ $X_1$ $X_2$ $\ldots$ $X_N$ $Q$ $T_1$ $G_1$ $T_2$ $G_2$ $\vdots$ $T_Q$ $G_Q$
输出
打印答案。
样本输入1
5 10 20 30 40 50 4 3 45 4 20 1 35 2 60
样本输出1
239
对于人员的最优移动顺序如下(人员的位置不一定按比例绘制):
对于每个任务,人员按以下方式移动。
- 第4个人向东移动6步,第3个人向东移动15步。
- 第2个人向西移动2步,第3个人向西移动26步,第4个人向西移动26步。
- 第4个人向东移动18步,第3个人向东移动18步,第2个人向东移动18步,第1个人向东移动25步。
- 第5个人向东移动13步,第4个人向东移动24步,第3个人向东移动24步,第2个人向东移动24步。
总移动次数为$21+54+79+85=239$。
无法以238次或更少的移动完成所有任务,因此打印239
。
样本输入2
8 0 1 2 3 4 5 6 100000000 6 1 100000000 8 0 1 100000000 8 4 1 100000000 5 21006578
样本输出2
4294967297
请注意,某些人可能需要移动到原点西侧或超过$10^8$米到东侧。
另外,请注意答案可能