103664: [Atcoder]ABC366 E - Manhattan Multifocal Ellipse
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:4
Solved:0
Description
Score : $475$ points
Problem Statement
You are given $N$ points $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$ on a two-dimensional plane, and a non-negative integer $D$.
Find the number of integer pairs $(x, y)$ such that $\displaystyle \sum_{i=1}^N (|x-x_i|+|y-y_i|) \leq D$.
Constraints
- $1 \leq N \leq 2 \times 10^5$
- $0 \leq D \leq 10^6$
- $-10^6 \leq x_i, y_i \leq 10^6$
- $(x_i, y_i) \neq (x_j, y_j)$ for $i \neq j$.
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $D$ $x_1$ $y_1$ $x_2$ $y_2$ $\vdots$ $x_N$ $y_N$
Output
Print the answer.
Sample Input 1
2 3 0 0 1 0
Sample Output 1
8
The following figure visualizes the input and the answer for Sample $1$. The blue points represent the input. The blue and red points, eight in total, satisfy the condition in the statement.
Sample Input 2
2 0 0 0 2 0
Sample Output 2
0
Sample Input 3
6 100 9 -6 10 -1 2 10 -1 7 -7 5 -1 -4
Sample Output 3
419
Output
得分:475分
问题陈述
在二维平面上给出N个点$(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$,以及一个非负整数$D$。
找出整数对$(x, y)$的数量,使得$\displaystyle \sum_{i=1}^N (|x-x_i|+|y-y_i|) \leq D$。
约束条件
- $1 \leq N \leq 2 \times 10^5$
- $0 \leq D \leq 10^6$
- $-10^6 \leq x_i, y_i \leq 10^6$
- 当$i \neq j$时,$(x_i, y_i) \neq (x_j, y_j)$。
- 所有输入值都是整数。
输入
输入从标准输入以下格式给出:
$N$ $D$ $x_1$ $y_1$ $x_2$ $y_2$ $\vdots$ $x_N$ $y_N$
输出
打印答案。
样本输入1
2 3 0 0 1 0
样本输出1
8
下图对样本1的输入和答案进行了可视化。蓝色点代表输入。蓝色和红色点,共计八个,满足题目中的条件。
样本输入2
2 0 0 0 2 0
样本输出2
0
样本输入3
6 100 9 -6 10 -1 2 10 -1 7 -7 5 -1 -4
样本输出3
419