103645: [Atcoder]ABC364 F - Range Connect MST
Description
Score : $500$ points
Problem Statement
There is a graph with $N + Q$ vertices, numbered $1, 2, \ldots, N + Q$. Initially, the graph has no edges.
For this graph, perform the following operation for $i = 1, 2, \ldots, Q$ in order:
- For each integer $j$ satisfying $L_i \leq j \leq R_i$, add an undirected edge with cost $C_i$ between vertices $N + i$ and $j$.
Determine if the graph is connected after all operations are completed. If it is connected, find the cost of a minimum spanning tree of the graph.
A minimum spanning tree is a spanning tree with the smallest possible cost, and the cost of a spanning tree is the sum of the costs of the edges used in the spanning tree.
Constraints
- $1 \leq N, Q \leq 2 \times 10^5$
- $1 \leq L_i \leq R_i \leq N$
- $1 \leq C_i \leq 10^9$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $Q$ $L_1$ $R_1$ $C_1$ $L_2$ $R_2$ $C_2$ $\vdots$ $L_Q$ $R_Q$ $C_Q$
Output
If the graph is connected, print the cost of a minimum spanning tree. Otherwise, print $-1$.
Sample Input 1
4 3 1 2 2 1 3 4 2 4 5
Sample Output 1
22
The following edges form a minimum spanning tree:
- An edge with cost $2$ connecting vertices $1$ and $5$
- An edge with cost $2$ connecting vertices $2$ and $5$
- An edge with cost $4$ connecting vertices $1$ and $6$
- An edge with cost $4$ connecting vertices $3$ and $6$
- An edge with cost $5$ connecting vertices $3$ and $7$
- An edge with cost $5$ connecting vertices $4$ and $7$
Since $2 + 2 + 4 + 4 + 5 + 5 = 22$, print $22$.
Sample Input 2
6 2 1 2 10 4 6 10
Sample Output 2
-1
The graph is disconnected.
Sample Input 3
200000 4 1 200000 1000000000 1 200000 998244353 1 200000 999999999 1 200000 999999999
Sample Output 3
199651870599998
Output
得分:500分
问题陈述
有一个有$N + Q$个顶点的图,编号为$1, 2, \ldots, N + Q$。最初,该图没有边。
对于这个图,按顺序对$i = 1, 2, \ldots, Q$执行以下操作:
- 对于每个满足$L_i \leq j \leq R_i$的整数$j$,在顶点$N + i$和$j$之间添加一条成本为$C_i$的无向边。
确定在所有操作完成后图是否连通。如果它是连通的,找到该图的最小生成树的成本。
最小生成树是具有可能的最小成本的生成树,生成树的成本是生成树中使用的边的成本之和。
约束条件
- $1 \leq N, Q \leq 2 \times 10^5$
- $1 \leq L_i \leq R_i \leq N$
- $1 \leq C_i \leq 10^9$
- 所有输入值都是整数。
输入
输入从标准输入以以下格式给出:
$N$ $Q$ $L_1$ $R_1$ $C_1$ $L_2$ $R_2$ $C_2$ $\vdots$ $L_Q$ $R_Q$ $C_Q$
输出
如果图是连通的,打印最小生成树的成本。否则,打印$-1$。
样本输入 1
4 3 1 2 2 1 3 4 2 4 5
样本输出 1
22
以下边构成了一个最小生成树:
- 一条成本为$2$的边,连接顶点$1$和$5$
- 一条成本为$2$的边,连接顶点$2$和$5$
- 一条成本为$4$的边,连接顶点$1$和$6$
- 一条成本为$4$的边,连接顶点$3$和$6$
- 一条成本为$5$的边,连接顶点$3$和$7$
- 一条成本为$5$的边,连接顶点$4$和$7$
由于$2 + 2 + 4 + 4 + 5 + 5 = 22$,打印$22$。
样本输入 2
6 2 1 2 10 4 6 10
样本输出 2
-1
图是断开的。
样本输入 3
200000 4 1 200000 1000000000 1 200000 998244353 1 200000 999999999 1 200000 999999999
样本输出 3
199651870599998