103624: [Atcoder]ABC362 E - Count Arithmetic Subsequences
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:18
Solved:0
Description
Score : $475$ points
Problem Statement
You are given a sequence $A = (A_1, A_2, \dots, A_N)$ of length $N$. For each $k = 1, 2, \dots, N$, find the number, modulo $998244353$, of (not necessarily contiguous) subsequences of $A$ of length $k$ that are arithmetic sequences. Two subsequences are distinguished if they are taken from different positions, even if they are equal as sequences.
What is a subsequence?
A subsequence of a sequence $A$ is a sequence obtained by deleting zero or more elements from $A$ and arranging the remaining elements without changing the order.Constraints
- $1 \leq N \leq 80$
- $1 \leq A_i \leq 10^9$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $A_1$ $A_2$ $\dots$ $A_N$
Output
Print the answers for $k = 1, 2, \dots, N$ in this order, in a single line, separated by spaces.
Sample Input 1
5 1 2 3 2 3
Sample Output 1
5 10 3 0 0
- There are $5$ subsequences of length $1$, all of which are arithmetic sequences.
- There are $10$ subsequences of length $2$, all of which are arithmetic sequences.
- There are $3$ subsequences of length $3$ that are arithmetic sequences: $(A_1, A_2, A_3)$, $(A_1, A_2, A_5)$, and $(A_1, A_4, A_5)$.
- There are no arithmetic subsequences of length $4$ or more.
Sample Input 2
4 1 2 3 4
Sample Output 2
4 6 2 1
Sample Input 3
1 100
Sample Output 3
1
Output
得分:475分
问题陈述
给定一个长度为N的序列A = (A_1, A_2, …, A_N)。对于每个k = 1, 2, …, N,找出模998244353的(不一定是连续的)子序列的数量,这些子序列是长度为k的等差数列。如果两个子序列来自不同的位置,即使它们作为序列是相等的,也将它们区分开来。
什么是子序列?
序列A的子序列是通过从A中删除零个或多个元素并将剩余元素按顺序排列而得到的序列。约束条件
- 1 ≤ N ≤ 80
- 1 ≤ A_i ≤ 10^9
- 所有输入值都是整数。
输入
输入从标准输入以下格式给出:
N A_1 A_2 … A_N
输出
按顺序打印k = 1, 2, …, N的答案,在一行中,用空格分隔。
示例输入1
5 1 2 3 2 3
示例输出1
5 10 3 0 0
- 有5个长度为1的子序列,它们都是等差数列。
- 有10个长度为2的子序列,它们都是等差数列。
- 有3个长度为3的等差数列子序列:(A_1, A_2, A_3),(A_1, A_2, A_5),和(A_1, A_4, A_5)。
- 没有长度为4或更长的等差数列子序列。
示例输入2
4 1 2 3 4
示例输出2
4 6 2 1
示例输入3
1 100
示例输出3
1