103616: [Atcoder]ABC361 G - Go Territory
Description
Score : $600$ points
Problem Statement
There are $N$ stones placed on a $2$-dimensional plane. The $i$-th stone is located at coordinates $(X_i, Y_i)$. All stones are located at lattice points in the first quadrant (including the axes).
Count the number of lattice points $(x, y)$ where no stone is placed and it is impossible to reach $(-1, -1)$ from $(x, y)$ by repeatedly moving up, down, left, or right by $1$ without passing through coordinates where a stone is placed.
More precisely, count the number of lattice points $(x, y)$ where no stone is placed, and there does not exist a finite sequence of integer pairs $(x_0, y_0), \ldots, (x_k, y_k)$ that satisfies all of the following four conditions:
- $(x_0, y_0) = (x, y)$.
- $(x_k, y_k) = (-1, -1)$.
- $|x_i - x_{i+1}| + |y_i - y_{i+1}| = 1$ for all $0 \leq i < k$.
- There is no stone at $(x_i, y_i)$ for all $0 \leq i \leq k$.
Constraints
- $0 \leq N \leq 2 \times 10^5$
- $0 \leq X_i, Y_i \leq 2 \times 10^5$
- The pairs $(X_i, Y_i)$ are distinct.
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $X_1$ $Y_1$ $\vdots$ $X_N$ $Y_N$
Output
Print the number of lattice points that satisfy the conditions.
Sample Input 1
5 1 0 0 1 2 3 1 2 2 1
Sample Output 1
1
It is impossible to reach $(-1, -1)$ from $(1, 1)$.
Sample Input 2
0
Sample Output 2
0
There may be cases where no stones are placed.
Sample Input 3
22 0 1 0 2 0 3 1 0 1 4 2 0 2 2 2 4 3 0 3 1 3 2 3 4 5 1 5 2 5 3 6 0 6 4 7 0 7 4 8 1 8 2 8 3
Sample Output 3
6
There are six such points: $(6, 1), (6, 2), (6, 3), (7, 1), (7, 2), (7, 3)$.
Output
问题陈述
在二维平面上放置了N块石头。第i块石头位于坐标$(X_i, Y_i)$。所有石头都位于第一象限的格点上(包括坐标轴上)。
计算没有放置石头且无法通过重复向上、向下、向左或向右移动1个单位而不经过放置石头的坐标到达$(-1, -1)$的格点$(x, y)$的数量。
更准确地说,计算没有放置石头且不存在满足以下四个条件的整数对序列$(x_0, y_0), \ldots, (x_k, y_k)$的格点$(x, y)$的数量:
- $(x_0, y_0) = (x, y)$。
- $(x_k, y_k) = (-1, -1)$。
- 对于所有$0 \leq i < k$,有$|x_i - x_{i+1}| + |y_i - y_{i+1}| = 1$。
- 对于所有$0 \leq i \leq k$,$(x_i, y_i)$上没有石头。
约束条件
- $0 \leq N \leq 2 \times 10^5$
- $0 \leq X_i, Y_i \leq 2 \times 10^5$
- 整数对$(X_i, Y_i)$是唯一的。
- 所有输入值都是整数。
输入
输入从标准输入以以下格式给出:
$N$ $X_1$ $Y_1$ $\vdots$ $X_N$ $Y_N$
输出
打印满足条件的格点数量。
示例输入1
5 1 0 0 1 2 3 1 2 2 1
示例输出1
1
无法从$(1, 1)$到达$(-1, -1)$。
示例输入2
0
示例输出2
0
可能存在没有放置石头的情况。
示例输入3
22 0 1 0 2 0 3 1 0 1 4 2 0 2 2 2 4 3 0 3 1 3 2 3 4 5 1 5 2 5 3 6 0 6 4 7 0 7 4 8 1 8 2 8 3
示例输出3
6
存在六个这样的点:$(6, 1), (6, 2), (6, 3), (7, 1), (7, 2), (7, 3)$。