103614: [Atcoder]ABC361 E - Tree and Hamilton Path 2
Description
Score : $500$ points
Problem Statement
In the nation of AtCoder, there are $N$ cities numbered $1$ to $N$ and $N-1$ roads numbered $1$ to $N-1$.
Road $i$ connects cities $A_i$ and $B_i$ bidirectionally, and its length is $C_i$. Any pair of cities can be reached from each other by traveling through some roads.
Find the minimum travel distance required to start from a city and visit all cities at least once using the roads.
Constraints
- $2 \leq N \leq 2\times 10^5$
- $1 \leq A_i, B_i \leq N$
- $1 \leq C_i \leq 10^9$
- All input values are integers.
- Any pair of cities can be reached from each other by traveling through some roads.
Input
The input is given from Standard Input in the following format:
$N$ $A_1$ $B_1$ $C_1$ $\vdots$ $A_{N-1}$ $B_{N-1}$ $C_{N-1}$
Output
Print the answer.
Sample Input 1
4 1 2 2 1 3 3 1 4 4
Sample Output 1
11
If you travel as $4 \to 1 \to 2 \to 1 \to 3$, the total travel distance is $11$, which is the minimum.
Note that you do not need to return to the starting city.
Sample Input 2
10 10 9 1000000000 9 8 1000000000 8 7 1000000000 7 6 1000000000 6 5 1000000000 5 4 1000000000 4 3 1000000000 3 2 1000000000 2 1 1000000000
Sample Output 2
9000000000
Beware overflow.
Output
问题陈述
在AtCoder国,有N个城市,编号为1到N,以及N-1条道路,编号为1到N-1。
道路i双向连接城市A_i和B_i,其长度为C_i。任何两个城市都可以通过某些道路相互到达。
找出从某个城市出发,通过道路至少访问一次所有城市的最小旅行距离。
限制条件
- $2 \leq N \leq 2\times 10^5$
- $1 \leq A_i, B_i \leq N$
- $1 \leq C_i \leq 10^9$
- 所有输入值都是整数。
- 任何两个城市都可以通过某些道路相互到达。
输入
输入从标准输入以以下格式给出:
$N$ $A_1$ $B_1$ $C_1$ $\vdots$ $A_{N-1}$ $B_{N-1}$ $C_{N-1}$
输出
打印答案。
示例输入1
4 1 2 2 1 3 3 1 4 4
示例输出1
11
如果你按$4 \to 1 \to 2 \to 1 \to 3$旅行,总旅行距离为11,这是最小的。
注意你不需要返回起始城市。
示例输入2
10 10 9 1000000000 9 8 1000000000 8 7 1000000000 7 6 1000000000 6 5 1000000000 5 4 1000000000 4 3 1000000000 3 2 1000000000 2 1 1000000000
示例输出2
9000000000
注意溢出问题。