103605: [Atcoder]ABC360 F - InterSections

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:1 Solved:0

Description

Score : $550$ points

Problem Statement

You are given $N$ intervals numbered $1$ to $N$. Interval $i$ is $[L_i, R_i]$.

Two intervals $[l_a, r_a]$ and $[l_b, r_b]$ are said to intersect if and only if they satisfy either $(l_a < l_b < r_a < r_b)$ or $(l_b < l_a < r_b < r_a)$.

Define $f(l, r)$ as the number of intervals $i$ ($1 \leq i \leq N$) that intersect with the interval $[l, r]$.

Among all pairs of integers $(l, r)$ satisfying $0 \leq l < r \leq 10^{9}$, find the pair $(l, r)$ that maximizes $f(l, r)$. If there are multiple such pairs, choose the one with the smallest $l$. If there are still multiple pairs, choose the one with the smallest $r$ among them. (Since $0 \leq l < r$, the pair $(l, r)$ to be answered is uniquely determined.)

Constraints

  • $1 \leq N \leq 10^{5}$
  • $0 \leq L_i < R_i \leq 10^{9}$ $(1 \leq i \leq N)$
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

$N$
$L_1$ $R_1$
$L_2$ $R_2$
$\vdots$
$L_N$ $R_N$

Output

Print the sought pair $(l, r)$ in the following format:

$l$ $r$

Sample Input 1

5
1 7
3 9
7 18
10 14
15 20

Sample Output 1

4 11

The maximum value of $f(l, r)$ is $4$, and among the pairs $(l, r)$ that achieve $f(l, r) = 4$, the smallest $l$ is $4$. The pairs $(l, r)$ that satisfy $f(l, r) = 4$ and $l = 4$ are the following three:

  • $(l, r) = (4, 11)$
  • $(l, r) = (4, 12)$
  • $(l, r) = (4, 13)$

Among these, the smallest $r$ is $11$, so print $4$ and $11$.


Sample Input 2

11
856977192 996441446
298251737 935869360
396653206 658841528
710569907 929136831
325371222 425309117
379628374 697340458
835681913 939343451
140179224 887672320
375607390 611397526
93530028 581033295
249611310 775998537

Sample Output 2

396653207 887672321

Output

分数:550分

问题陈述

给你N个区间,编号从1到N。区间i是[L_i, R_i]。

如果两个区间[l_a, r_a]和[l_b, r_b]满足(l_a < l_b < r_a < r_b)或(l_b < l_a < r_b < r_a),则称这两个区间相交

定义f(l, r)为与区间[l, r]相交的区间i(1 ≤ i ≤ N)的数量。

在所有满足0 ≤ l < r ≤ 10^9的整数对(l, r)中,找出使f(l, r)最大化的对(l, r)。如果有多个这样的对,选择l最小的对。如果还有多个对,从中选择r最小的一个。(由于0 ≤ l < r,要回答的对(l, r)是唯一确定的。)

约束条件

  • 1 ≤ N ≤ 10^5
  • 0 ≤ L_i < R_i ≤ 10^9 (1 ≤ i ≤ N)
  • 所有输入值都是整数。

输入

输入从标准输入以以下格式给出:

$N$
$L_1$ $R_1$
$L_2$ $R_2$
$\vdots$
$L_N$ $R_N$

输出

以下列格式打印所求的对(l, r):

$l$ $r$

示例输入1

5
1 7
3 9
7 18
10 14
15 20

示例输出1

4 11

f(l, r)的最大值为4,在使f(l, r) = 4的(l, r)对中,最小的l为4。满足f(l, r) = 4和l = 4的对(l, r)有以下三个:

  • (l, r) = (4, 11)
  • (l, r) = (4, 12)
  • (l, r) = (4, 13)

在这些中,最小的r为11,所以打印4和11。


示例输入2

11
856977192 996441446
298251737 935869360
396653206 658841528
710569907 929136831
325371222 425309117
379628374 697340458
835681913 939343451
140179224 887672320
375607390 611397526
93530028 581033295
249611310 775998537

示例输出2

396653207 887672321

加入题单

上一题 下一题 算法标签: