103590: [Atcoder]ABC359 A - Count Takahashi
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:11
Solved:0
Description
Score : $100$ points
Problem Statement
You are given $N$ strings.
The $i$-th string $S_i$ $(1 \leq i \leq N)$ is either Takahashi
or Aoki
.
How many $i$ are there such that $S_i$ is equal to Takahashi
?
Constraints
- $1 \leq N \leq 100$
- $N$ is an integer.
- Each $S_i$ is
Takahashi
orAoki
. $(1 \leq i \leq N)$
Input
The input is given from Standard Input in the following format:
$N$ $S_1$ $S_2$ $\vdots$ $S_N$
Output
Print the count of $i$ such that $S_i$ is equal to Takahashi
as an integer in a single line.
Sample Input 1
3 Aoki Takahashi Takahashi
Sample Output 1
2
$S_2$ and $S_3$ are equal to Takahashi
, while $S_1$ is not.
Therefore, print 2
.
Sample Input 2
2 Aoki Aoki
Sample Output 2
0
It is possible that no $S_i$ is equal to Takahashi
.
Sample Input 3
20 Aoki Takahashi Takahashi Aoki Aoki Aoki Aoki Takahashi Aoki Aoki Aoki Takahashi Takahashi Aoki Takahashi Aoki Aoki Aoki Aoki Takahashi
Sample Output 3
7
Output
分数:100分
问题描述
你被给出了$N$个字符串。
第$i$个字符串$S_i$ $(1 \leq i \leq N)$是
有多少个$i$使得$S_i$等于
限制条件
- $1 \leq N \leq 100$
- $N$是一个整数。
- 每个$S_i$是
或 。 $(1 \leq i \leq N)$
输入
输入从标准输入按以下格式给出:
$N$ $S_1$ $S_2$ $\vdots$ $S_N$
输出
在一行中打印出使得$S_i$等于
样例输入1
3 Aoki Takahashi Takahashi
样例输出1
2
$S_2$和$S_3$等于
因此,打印2
。
样例输入2
2 Aoki Aoki
样例输出2
0
可能没有$S_i$等于
样例输入3
20 Aoki Takahashi Takahashi Aoki Aoki Aoki Aoki Takahashi Aoki Aoki Aoki Takahashi Takahashi Aoki Takahashi Aoki Aoki Aoki Aoki Takahashi
样例输出3
7