103590: [Atcoder]ABC359 A - Count Takahashi

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:11 Solved:0

Description

Score : $100$ points

Problem Statement

You are given $N$ strings.

The $i$-th string $S_i$ $(1 \leq i \leq N)$ is either Takahashi or Aoki.

How many $i$ are there such that $S_i$ is equal to Takahashi?

Constraints

  • $1 \leq N \leq 100$
  • $N$ is an integer.
  • Each $S_i$ is Takahashi or Aoki. $(1 \leq i \leq N)$

Input

The input is given from Standard Input in the following format:

$N$
$S_1$
$S_2$
$\vdots$
$S_N$

Output

Print the count of $i$ such that $S_i$ is equal to Takahashi as an integer in a single line.


Sample Input 1

3
Aoki
Takahashi
Takahashi

Sample Output 1

2

$S_2$ and $S_3$ are equal to Takahashi, while $S_1$ is not.

Therefore, print 2.


Sample Input 2

2
Aoki
Aoki

Sample Output 2

0

It is possible that no $S_i$ is equal to Takahashi.


Sample Input 3

20
Aoki
Takahashi
Takahashi
Aoki
Aoki
Aoki
Aoki
Takahashi
Aoki
Aoki
Aoki
Takahashi
Takahashi
Aoki
Takahashi
Aoki
Aoki
Aoki
Aoki
Takahashi

Sample Output 3

7

Output

分数:100分

问题描述

你被给出了$N$个字符串。

第$i$个字符串$S_i$ $(1 \leq i \leq N)$是

有多少个$i$使得$S_i$等于

限制条件

  • $1 \leq N \leq 100$
  • $N$是一个整数。
  • 每个$S_i$是。 $(1 \leq i \leq N)$

输入

输入从标准输入按以下格式给出:

$N$
$S_1$
$S_2$
$\vdots$
$S_N$

输出

在一行中打印出使得$S_i$等于的$i$的数量,作为一个整数。


样例输入1

3
Aoki
Takahashi
Takahashi

样例输出1

2

$S_2$和$S_3$等于,而$S_1$不等于。

因此,打印2


样例输入2

2
Aoki
Aoki

样例输出2

0

可能没有$S_i$等于


样例输入3

20
Aoki
Takahashi
Takahashi
Aoki
Aoki
Aoki
Aoki
Takahashi
Aoki
Aoki
Aoki
Takahashi
Takahashi
Aoki
Takahashi
Aoki
Aoki
Aoki
Aoki
Takahashi

样例输出3

7

加入题单

上一题 下一题 算法标签: