103532: [Atcoder]ABC353 C - Sigma Problem

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:15 Solved:0

Description

Score: $300$ points

Problem Statement

For positive integers $x$ and $y$, define $f(x, y)$ as the remainder of $(x + y)$ divided by $10^8$.

You are given a sequence of positive integers $A = (A_1, \ldots, A_N)$ of length $N$. Find the value of the following expression:

$\displaystyle \sum_{i=1}^{N-1}\sum_{j=i+1}^N f(A_i,A_j)$.


Constraints

  • $2 \leq N \leq 3\times 10^5$
  • $1 \leq A_i < 10^8$
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

$N$ 
$A_1$ $\ldots$ $A_N$

Output

Print the answer.


Sample Input 1

3
3 50000001 50000002

Sample Output 1

100000012
  • $f(A_1,A_2)=50000004$
  • $f(A_1,A_3)=50000005$
  • $f(A_2,A_3)=3$

Thus, the answer is $f(A_1,A_2) + f(A_1,A_3) + f(A_2,A_3) = 100000012$.

Note that you are not asked to compute the remainder of the sum divided by $10^8$.


Sample Input 2

5
1 3 99999999 99999994 1000000

Sample Output 2

303999988

Input

Output

得分:300分

问题描述

对于正整数$x$和$y$,定义$f(x, y)$为$(x + y)$除以$10^8$的余数。

你被给定一个长度为$N$的正整数序列$A = (A_1, \ldots, A_N)$。请找到以下表达式的值:

$\displaystyle \sum_{i=1}^{N-1}\sum_{j=i+1}^N f(A_i,A_j)$。


限制条件

  • $2 \leq N \leq 3\times 10^5$
  • $1 \leq A_i < 10^8$
  • 所有输入值都是整数。

输入

输入通过标准输入给出以下格式:

$N$ 
$A_1$ $\ldots$ $A_N$

输出

打印答案。


样例输入1

3
3 50000001 50000002

样例输出1

100000012
  • $f(A_1,A_2)=50000004$
  • $f(A_1,A_3)=50000005$
  • $f(A_2,A_3)=3$

因此,答案是$f(A_1,A_2) + f(A_1,A_3) + f(A_2,A_3) = 100000012$。

注意,你不需要计算和除以$10^8$的余数。


样例输入2

5
1 3 99999999 99999994 1000000

样例输出2

303999988

加入题单

上一题 下一题 算法标签: