103442: [Atcoder]ABC344 C - A+B+C
Description
Score: $250$ points
Problem Statement
You are given three sequences $A=(A_1,\ldots,A_N)$, $B=(B_1,\ldots,B_M)$, and $C=(C_1,\ldots,C_L)$.
Additionally, a sequence $X=(X_1,\ldots,X_Q)$ is given. For each $i=1,\ldots,Q$, solve the following problem:
Problem: Is it possible to select one element from each of $A$, $B$, and $C$ so that their sum is $X_i$?
Constraints
- $1 \leq N,M,L \leq 100$
- $0 \leq A_i, B_i ,C_i \leq 10^8$
- $1 \leq Q \leq 2\times 10^5$
- $0 \leq X_i \leq 3\times 10^8$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $A_1$ $\ldots$ $A_N$ $M$ $B_1$ $\ldots$ $B_M$ $L$ $C_1$ $\ldots$ $C_L$ $Q$ $X_1$ $\ldots$ $X_Q$
Output
Print $Q$ lines.
The $i$-th line should contain Yes
if it is possible to select one element from each of $A$, $B$, and $C$ so that their sum is $X_i$, and No
otherwise.
Sample Input 1
3 1 2 3 2 2 4 6 1 2 4 8 16 32 4 1 5 10 50
Sample Output 1
No Yes Yes No
- It is impossible to select one element from each of $A$, $B$, and $C$ so that their sum is $1$.
- Selecting $1$, $2$, and $2$ from $A$, $B$, and $C$, respectively, makes the sum $5$.
- Selecting $2$, $4$, and $4$ from $A$, $B$, and $C$, respectively, makes the sum $10$.
- It is impossible to select one element from each of $A$, $B$, and $C$ so that their sum is $50$.
Input
Output
问题描述
给你三个序列$A=(A_1,\ldots,A_N)$,$B=(B_1,\ldots,B_M)$和$C=(C_1,\ldots,C_L)$。
此外,还给出一个序列$X=(X_1,\ldots,X_Q)$。对于每个$i=1,\ldots,Q$,解决以下问题:
问题:是否可以从$A$,$B$和$C$中分别选择一个元素,使它们的和等于$X_i$?
限制条件
- $1 \leq N,M,L \leq 100$
- $0 \leq A_i, B_i ,C_i \leq 10^8$
- $1 \leq Q \leq 2\times 10^5$
- $0 \leq X_i \leq 3\times 10^8$
- 所有输入值都是整数。
输入
输入从标准输入中给出,如下所示:
$N$ $A_1$ $\ldots$ $A_N$ $M$ $B_1$ $\ldots$ $B_M$ $L$ $C_1$ $\ldots$ $C_L$ $Q$ $X_1$ $\ldots$ $X_Q$
输出
打印$Q$行。
如果可以分别从$A$,$B$和$C$中选择一个元素,使它们的和等于$X_i$,则第$i$行应包含Yes
,否则包含No
。
样例输入1
3 1 2 3 2 2 4 6 1 2 4 8 16 32 4 1 5 10 50
样例输出1
No Yes Yes No
- 无法分别从$A$,$B$和$C$中选择一个元素,使它们的和等于$1$。
- 分别从$A$,$B$和$C$中选择$1$,$2$和$2$,使它们的和为$5$。
- 分别从$A$,$B$和$C$中选择$2$,$4$和$4$,使它们的和为$10$。
- 无法分别从$A$,$B$和$C$中选择一个元素,使它们的和等于$50$。