103435: [Atcoder]ABC343 F - Second Largest Query
Description
Score: $525$ points
Problem Statement
You are given a sequence $A = (A_1, A_2, \ldots, A_N)$ of length $N$.
Process $Q$ queries in the order they are given. Each query is of one of the following two types:
- Type $1$: Given in the form
1 p x
. Change the value of $A_p$ to $x$. - Type $2$: Given in the form
2 l r
. print the number of occurrences of the second largest value in $(A_l, A_{l+1}, \ldots, A_r)$. More precisely, print the number of integers $i$ satisfying $l \leq i \leq r$ such that there is exactly one distinct value greater than $A_i$ among $A_l, A_{l+1}, \ldots, A_r$.
Constraints
- $1 \leq N, Q \leq 2 \times 10^5$
- $1 \leq A_i \leq 10^9$
- For type-$1$ queries, $1 \leq p \leq N$.
- For type-$1$ queries, $1 \leq x \leq 10^9$.
- For type-$2$ queries, $1 \leq l \leq r \leq N$.
- There is at least one type-$2$ query.
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $Q$ $A_1$ $A_2$ $\ldots$ $A_N$ $\text{query}_{1}$ $\vdots$ $\text{query}_{Q}$
Here, $\text{query}_{i}$ is the $i$-th query and given in one of the following formats:
$1$ $p$ $x$
$2$ $l$ $r$
Output
Let $q$ be the number of type-$2$ queries. Print $q$ lines. The $i$-th line should contain the response to the $i$-th type-$2$ query.
Sample Input 1
5 4 3 3 1 4 5 2 1 3 2 5 5 1 3 3 2 2 4
Sample Output 1
1 0 2
Initially, $A = (3, 3, 1, 4, 5)$.
For the first query, the second largest value in $(3, 3, 1)$ is $1$, which appears once in $3, 3, 1$, so print $1$.
For the second query, there is no second largest value in $(5)$, so print $0$.
The third query makes $A = (3, 3, 3, 4, 5)$.
For the fourth query, the second largest value in $(3, 3, 4)$, is $3$, which appears twice in $3, 3, 4$, so print $2$.
Sample Input 2
1 1 1000000000 2 1 1
Sample Output 2
0
Sample Input 3
8 9 2 4 4 3 9 1 1 2 1 5 4 2 7 7 2 2 6 1 4 4 2 2 5 2 2 7 1 1 1 1 8 1 2 1 8
Sample Output 3
0 1 0 2 4
Input
Output
问题描述
给你一个长度为$N$的序列$A = (A_1, A_2, \ldots, A_N)$。
按照给出的顺序处理$Q$个查询。每个查询分为以下两种类型之一:
- 类型$1$:以形式
1 p x
给出。将$A_p$的值改为$x$。 - 类型$2$:以形式
2 l r
给出。打印区间$(A_l, A_{l+1}, \ldots, A_r)$中第二大值的**出现次数**。更准确地说,打印满足$l \leq i \leq r$的整数$i$的数量,使得在$A_l, A_{l+1}, \ldots, A_r$中,恰好有一个不同于$A_i$的更大值。
约束条件
- $1 \leq N, Q \leq 2 \times 10^5$
- $1 \leq A_i \leq 10^9$
- 对于类型$1$的查询,$1 \leq p \leq N$。
- 对于类型$1$的查询,$1 \leq x \leq 10^9$。
- 对于类型$2$的查询,$1 \leq l \leq r \leq N$。
- 至少有一个类型$2$的查询。
- 所有的输入值都是整数。
输入
输入从标准输入给出,格式如下:
$N$ $Q$ $A_1$ $A_2$ $\ldots$ $A_N$ $\text{query}_{1}$ $\vdots$ $\text{query}_{Q}$
其中,$\text{query}_{i}$是第$i$个查询,给出以下格式之一:
$1$ $p$ $x$
$2$ $l$ $r$
输出
输出$q$行。其中$q$是类型$2$查询的数量。第$i$行应包含对第$i$个类型$2$查询的响应。
样例输入1
5 4 3 3 1 4 5 2 1 3 2 5 5 1 3 3 2 2 4
样例输出1
1 0 2
初始时,$A = (3, 3, 1, 4, 5)$。
对于第一个查询,区间$(3, 3, 1)$中的第二大值是$1$,它在$3, 3, 1$中出现了一次,所以打印$1$。
对于第二个查询,区间$(5)$中没有第二大值,所以打印$0$。
第三个查询使$A = (3, 3, 3, 4, 5)$。
对于第四个查询,区间$(3, 3, 4)$中的第二大值是$3$,它在$3, 3, 4$中出现了两次,所以打印$2$。
样例输入2
1 1 1000000000 2 1 1
样例输出2
0
样例输入3
8 9 2 4 4 3 9 1 1 2 1 5 4 2 7 7 2 2 6 1 4 4 2 2 5 2 2 7 1 1 1 1 8 1 2 1 8
样例输出3
0 1 0 2 4