103432: [Atcoder]ABC343 C - 343
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:13
Solved:0
Description
Score: $250$ points
Problem Statement
You are given a positive integer $N$.
Find the maximum value of a palindromic cube number not greater than $N$.
Here, a positive integer $K$ is defined to be a palindromic cube number if and only if it satisfies the following two conditions:
- There is a positive integer $x$ such that $x^3 = K$.
- The decimal representation of $K$ without leading zeros is a palindrome. More precisely, if $K$ is represented as $K = \sum_{i = 0}^{L-1} A_i10^i$ using integers $A_0, A_1, \ldots, A_{L-2}$ between $0$ and $9$, inclusive, and an integer $A_{L-1}$ between $1$ and $9$, inclusive, then $A_i = A_{L-1-i}$ for all $i = 0, 1, \ldots, L-1$.
Constraints
- $N$ is a positive integer not greater than $10^{18}$.
Input
The input is given from Standard Input in the following format:
$N$
Output
Print the answer.
Sample Input 1
345
Sample Output 1
343
$343$ is a palindromic cube number, while $344$ and $345$ are not. Thus, the answer is $343$.
Sample Input 2
6
Sample Output 2
1
Sample Input 3
123456789012345
Sample Output 3
1334996994331
Input
Output
得分:250分
问题描述
给你一个正整数$N$。
找出不大于$N$的最大回文立方数。
这里,正整数$K$定义为回文立方数,当且仅当它满足以下两个条件:
- 存在一个正整数$x$,使得$x^3=K$。
- $K$的十进制表示法中,不包括前导零,是一个回文数。更精确地说,如果$K$可以用整数$A_0,A_1,\ldots,A_{L-2}$表示,其中$A_0,A_1,\ldots,A_{L-2}$在$0$到$9$之间,包括$0$和$9$,以及一个整数$A_{L-1}$在$1$到$9$之间,包括$1$和$9$,则对于所有$i=0,1,\ldots,L-1$,$A_i=A_{L-1-i}$。
约束条件
- $N$是一个不大于$10^{18}$的正整数。
输入
输入从标准输入按以下格式给出:
$N$
输出
输出答案。
样例输入1
345
样例输出1
343
$343$是一个回文立方数,而$344$和$345$不是。因此,答案是$343$。
样例输入2
6
样例输出2
1
样例输入3
123456789012345
样例输出3
1334996994331