103394: [Atcoder]ABC339 E - Smooth Subsequence
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:3
Solved:0
Description
Score: $525$ points
Problem Statement
You are given a sequence $A = (A_1, A_2, \ldots, A_N)$ of length $N$.
Find the maximum length of a subsequence of $A$ such that the absolute difference between any two adjacent terms is at most $D$.
A subsequence of a sequence $A$ is a sequence that can be obtained by deleting zero or more elements from $A$ and arranging the remaining elements in their original order.
Constraints
- $1 \leq N \leq 5 \times 10^5$
- $0 \leq D \leq 5 \times 10^5$
- $1 \leq A_i \leq 5 \times 10^5$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $D$ $A_1$ $A_2$ $\ldots$ $A_N$
Output
Print the answer.
Sample Input 1
4 2 3 5 1 2
Sample Output 1
3
The subsequence $(3, 1, 2)$ of $A$ has absolute differences of at most $2$ between adjacent terms.
Sample Input 2
5 10 10 20 100 110 120
Sample Output 2
3
Sample Input 3
11 7 21 10 3 19 28 12 11 3 3 15 16
Sample Output 3
6
Input
Output
得分:525分
问题描述
给你一个长度为 N 的序列 A = (A_1, A_2, \ldots, A_N)。
找出 A 的一个子序列,使得这个子序列中任意两个相邻项的绝对差不超过 D。
一个序列 A 的子序列是指从 A 中删除零个或多个元素,并将剩余元素按原顺序排列后得到的序列。
约束条件
- $1 \leq N \leq 5 \times 10^5$
- $0 \leq D \leq 5 \times 10^5$
- $1 \leq A_i \leq 5 \times 10^5$
- 所有输入值都是整数。
输入
输入通过标准输入给出,格式如下:
$N$ $D$ $A_1$ $A_2$ $\ldots$ $A_N$
输出
输出答案。
样例输入 1
4 2 3 5 1 2
样例输出 1
3
A 的子序列 $(3, 1, 2)$ 中,相邻项的绝对差不超过 2。
样例输入 2
5 10 10 20 100 110 120
样例输出 2
3
样例输入 3
11 7 21 10 3 19 28 12 11 3 3 15 16
样例输出 3
6