103316: [Atcoder]ABC331 G - Collect Them All

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $625$ points

Problem Statement

There are $N$ cards in a box. Each card has an integer written on it, which is between $1$ and $M$, inclusive. For each $i=1,\ldots,M$, there are $C_i$ cards with the number $i$ written on them.

Starting with an empty notebook, you repeat the following operation:

  • Randomly draw one card from the box. Write the integer on the card in the notebook, then return the card to the box.

Find the expected value, modulo $998244353$, of the number of times the operation is performed until the notebook has all integers from $1$ to $M$ written at least once.

How to find an expected value modulo $998244353$ The expected value sought in this problem can be proven to always be a rational number. Furthermore, the constraints of this problem guarantee that when the expected value is expressed as an irreducible fraction $\frac yx$, the denominator $x$ is not divisible by $998244353$. Then, there is a unique $0\leq z\lt998244353$ such that $y\equiv xz\pmod{998244353}$. Print this $z$.

Constraints

  • $1 \leq M \leq N \leq 2\times 10^5$
  • $1 \leq C_i$
  • $\sum_{i=1}^{M}C_i=N$
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

$N$ $M$
$C_1$ $\ldots$ $C_M$

Output

Print the answer.


Sample Input 1

2 2
1 1

Sample Output 1

3

The series of operations may proceed as follows:

  • You draw a card with $1$ written on it. The notebook now has one $1$ written in it.
  • You again draw a card with $1$ written on it. The notebook now has two $1$s written in it.
  • You draw a card with $2$ written on it. The notebook now has two $1$s and one $2$ written in it.

The sought expected value is $2\times\frac{1}{2}+3\times\frac{1}{4}+4\times\frac{1}{8}+\ldots=3$.


Sample Input 2

5 2
4 1

Sample Output 2

748683270

The expected value is $\frac{21}{4}$, whose representation modulo $998244353$ is $748683270$.


Sample Input 3

50 50
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sample Output 3

244742906

The expected value is $\frac{13943237577224054960759}{61980890084919934128}$.


Sample Input 4

74070 15
1 2 3 11 22 33 111 222 333 1111 2222 3333 11111 22222 33333

Sample Output 4

918012973

Input

Output

分数:$625$分

问题描述

盒子里有$N$张卡片。每张卡片上都写有一个整数,范围在$1$到$M$之间,包括$1$和$M$。对于每个$i=1,\ldots,M$,有$C_i$张写有数字$i$的卡片。

从一个空的笔记本开始,你重复以下操作:

  • 从盒子里随机抽取一张卡片。在笔记本上写下卡片上的整数,然后将卡片放回盒子。

求出直到笔记本上至少写有$1$到$M$之间的所有整数为止,需要进行这个操作的期望次数(对$998244353$取模)。

如何求对$998244353$取模的期望值 本问题中寻求的期望值可以被证明总是有理数。此外,本问题的约束条件保证了当期望值表示为不可约分数$\frac yx$时,分母$x$不会被$998244353$整除。 那么,存在一个唯一的$0\leq z\lt998244353$,使得$y\equiv xz\pmod{998244353}$。输出这个$z$。

约束条件

  • $1 \leq M \leq N \leq 2\times 10^5$
  • $1 \leq C_i$
  • $\sum_{i=1}^{M}C_i=N$
  • 所有输入值都是整数。

输入

输入通过标准输入给出以下格式:

$N$ $M$
$C_1$ $\ldots$ $C_M$

输出

输出答案。


样例输入1

2 2
1 1

样例输出1

3

操作序列可以如下进行:

  • 你抽到一张写有$1$的卡片。现在笔记本上写有一个$1$。
  • 你再次抽到一张写有$1$的卡片。现在笔记本上写有两个$1$。
  • 你抽到一张写有$2$的卡片。现在笔记本上写有两个$1$和一个$2$。

所求期望值为$2\times\frac{1}{2}+3\times\frac{1}{4}+4\times\frac{1}{8}+\ldots=3$。


样例输入2

5 2
4 1

样例输出2

748683270

期望值为$\frac{21}{4}$,对$998244353$取模的结果为$748683270$。


样例输入3

50 50
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

样例输出3

244742906

期望值为$\frac{13943237577224054960759}{61980890084919934128}$。


样例输入4

74070 15
1 2 3 11 22 33 111 222 333 1111 2222 3333 11111 22222 33333

样例输出4

918012973

加入题单

算法标签: