103276: [Atcoder]ABC327 G - Many Good Tuple Problems
Description
Score : $650$ points
Problem Statement
The definition of a good pair of sequences in this problem is the same as in Problem D.
A pair of sequences of length $M$ consisting of positive integers at most $N$, $(S, T) = ((S_1, S_2, \dots, S_M), (T_1, T_2, \dots, T_M))$, is said to be a good pair of sequences when $(S, T)$ satisfies the following condition.
- There exists a sequence $X = (X_1, X_2, \dots, X_N)$ of length $N$ consisting of $0$ and $1$ that satisfies the following condition:
- $X_{S_i} \neq X_{T_i}$ for each $i=1, 2, \dots, M$.
Among the $N^{2M}$ possible pairs of sequences of length $M$ consisting of positive integers at most $N$, $(A, B) = ((A_1, A_2, \dots, A_M), (B_1, B_2, \dots, B_M))$, find the number, modulo $998244353$, of those that are good pairs of sequences.
Constraints
- $1 \leq N \leq 30$
- $1 \leq M \leq 10^9$
- $N$ and $M$ are integers.
Input
The input is given from Standard Input in the following format:
$N$ $M$
Output
Print the number, modulo $998244353$, of pairs of sequences of length $M$ consisting of positive integers at most $N$ that are good pairs of sequences.
Sample Input 1
3 2
Sample Output 1
36
For example, if $A=(1,2), B=(2,3)$, then $(A, B)$ is a good pair of sequences. Indeed, if we set $X=(0,1,0)$, then $X$ is a sequence of length $N$ consisting of $0$ and $1$ that satisfies $X_{A_1} \neq X_{B_1}$ and $X_{A_2} \neq X_{B_2}$. Thus, $(A, B)$ satisfies the condition of being a good pair of sequences.
There are a total of $36$ good pairs of sequences, so print this number.
Sample Input 2
3 3
Sample Output 2
168
Sample Input 3
12 34
Sample Output 3
539029838
Sample Input 4
20 231104
Sample Output 4
966200489
Input
Output
问题描述
本题中,好序列对的定义与问题D中的定义相同。
长度为$M$,由正整数构成的两个序列$(S, T) = ((S_1, S_2, \dots, S_M), (T_1, T_2, \dots, T_M))$,当$(S, T)$满足以下条件时,被称为< strong>好序列对:
- 存在一个长度为$N$的由$0$和$1$构成的序列$X = (X_1, X_2, \dots, X_N)$,满足以下条件:
- 对于每个$i=1, 2, \dots, M$,有$X_{S_i} \neq X_{T_i}$。
在长度为$M$的两个序列$(A, B) = ((A_1, A_2, \dots, A_M), (B_1, B_2, \dots, B_M))$中,找出由正整数构成的$N^{2M}$个可能的对,其中$(A, B)$是好序列对的个数,对结果取模$998244353$。
限制条件
- $1 \leq N \leq 30$
- $1 \leq M \leq 10^9$
- $N$和$M$是整数。
输入
输入以标准输入的形式给出,如下所示:
$N$ $M$
输出
输出长度为$M$的两个序列,由正整数构成的$N^{2M}$个可能的对中,是好序列对的个数,对结果取模$998244353$。
样例输入1
3 2
样例输出1
36
例如,如果$A=(1,2), B=(2,3)$,则$(A, B)$是一个好序列对。确实,如果我们设置$X=(0,1,0)$,那么$X$是一个长度为$N$的由$0$和$1$构成的序列,满足$X_{A_1} \neq X_{B_1}$和$X_{A_2} \neq X_{B_2}$。因此,$(A, B)$满足好序列对的条件。
总共有$36$个好序列对,所以打印这个数。
样例输入2
3 3
样例输出2
168
样例输入3
12 34
样例输出3
539029838
样例输入4
20 231104
样例输出4
966200489