103172: [Atcoder]ABC317 C - Remembering the Days

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:7 Solved:0

Description

Score : $300$ points

Problem Statement

A region has $N$ towns numbered $1$ to $N$, and $M$ roads numbered $1$ to $M$.

The $i$-th road connects town $A_i$ and town $B_i$ bidirectionally with length $C_i$.

Find the maximum possible total length of the roads you traverse when starting from a town of your choice and getting to another town without passing through the same town more than once.

Constraints

  • $2 \leq N \leq 10$
  • $1 \leq M \leq \frac{N(N-1)}{2}$
  • $1 \leq A_i < B_i \leq N$
  • The pairs $(A_i,B_i)$ are distinct.
  • $1\leq C_i \leq 10^8$
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

$N$ $M$
$A_1$ $B_1$ $C_1$
$\vdots$
$A_M$ $B_M$ $C_M$

Output

Print the answer.


Sample Input 1

4 4
1 2 1
2 3 10
1 3 100
1 4 1000

Sample Output 1

1110

If you travel as $4\to 1\to 3\to 2$, the total length of the roads you traverse is $1110$.


Sample Input 2

10 1
5 9 1

Sample Output 2

1

There may be a town that is not connected to a road.


Sample Input 3

10 13
1 2 1
1 10 1
2 3 1
3 4 4
4 7 2
4 8 1
5 8 1
5 9 3
6 8 1
6 9 5
7 8 1
7 9 4
9 10 3

Sample Output 3

20

Figure

Output

得分:300分

问题描述

有一个包含从1到$N$编号的$N$个城镇的地区,以及从1到$M$编号的$M$条道路。

第$i$条道路双向连接城镇$A_i$和城镇$B_i$,长度为$C_i$。

从任意一个城镇出发,前往另一个城镇,不通过同一个城镇超过一次,找到可能的最大道路总长度。

约束

  • $2 \leq N \leq 10$
  • $1 \leq M \leq \frac{N(N-1)}{2}$
  • $1 \leq A_i < B_i \leq N$
  • $(A_i,B_i)$对是唯一的。
  • $1\leq C_i \leq 10^8$
  • 所有输入值都是整数。

输入

输入将从标准输入中以以下格式给出:

$N$ $M$
$A_1$ $B_1$ $C_1$
$\vdots$
$A_M$ $B_M$ $C_M$

输出

打印答案。


样例输入1

4 4
1 2 1
2 3 10
1 3 100
1 4 1000

样例输出1

1110

如果你走$4\to 1\to 3\to 2$,你经过的道路总长度为$1110$。


样例输入2

10 1
5 9 1

样例输出2

1

可能存在一个不与道路相连的城镇。


样例输入3

10 13
1 2 1
1 10 1
2 3 1
3 4 4
4 7 2
4 8 1
5 8 1
5 9 3
6 8 1
6 9 5
7 8 1
7 9 4
9 10 3

样例输出3

20

Figure

HINT

从一个点出发,走遍没有给点各一次,最多走多少路?

加入题单

上一题 下一题 算法标签: