103114: [Atcoder]ABC311 E - Defect-free Squares
Description
Score : $475$ points
Problem Statement
There is a grid with $H$ rows and $W$ columns. Let $(i, j)$ denote the square at the $i$-th row from the top and $j$-th column from the left of the grid.
Each square of the grid is holed or not. There are exactly $N$ holed squares: $(a_1, b_1), (a_2, b_2), \dots, (a_N, b_N)$.
When the triple of positive integers satisfies the following condition, the square region whose top-left corner is $(i, j)$ and whose bottom-right corner is $(i + n - 1, j + n - 1)$ is called a holeless square.
- $i + n - 1 \leq H$.
- $j + n - 1 \leq W$.
- For every pair of non-negative integers $(k, l)$ such that $0 \leq k \leq n - 1, 0 \leq l \leq n - 1$, square $(i + k, j + l)$ is not holed.
How many holeless squares are in the grid?
Constraints
- $1 \leq H, W \leq 3000$
- $0 \leq N \leq \min(H \times W, 10^5)$
- $1 \leq a_i \leq H$
- $1 \leq b_i \leq W$
- All $(a_i, b_i)$ are pairwise different.
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$H$ $W$ $N$ $a_1$ $b_1$ $a_2$ $b_2$ $\vdots$ $a_N$ $b_N$
Output
Print the number of holeless squares.
Sample Input 1
2 3 1 2 3
Sample Output 1
6
There are six holeless squares, listed below. For the first five, $n = 1$, and the top-left and bottom-right corners are the same square.
- The square region whose top-left and bottom-right corners are $(1, 1)$.
- The square region whose top-left and bottom-right corners are $(1, 2)$.
- The square region whose top-left and bottom-right corners are $(1, 3)$.
- The square region whose top-left and bottom-right corners are $(2, 1)$.
- The square region whose top-left and bottom-right corners are $(2, 2)$.
- The square region whose top-left corner is $(1, 1)$ and whose bottom-right corner is $(2, 2)$.
Sample Input 2
3 2 6 1 1 1 2 2 1 2 2 3 1 3 2
Sample Output 2
0
There may be no holeless square.
Sample Input 3
1 1 0
Sample Output 3
1
The whole grid may be a holeless square.
Sample Input 4
3000 3000 0
Sample Output 4
9004500500
Input
题意翻译
给出一个 $H\times W$ 的矩阵,每个位置**要么有洞,要么没洞**,问有多少个每个元素均为正整数的三元组 $(x,y,n)$,满足: $x+n-1\le H$,$y+n-1\le W$,以 $(x,y)$ 为左上角、$(x+n-1,y+n-1)$ 为右下角的矩阵**每个位置都没有洞**。 $H,W\le 3000$,洞的个数不超过 $10^5$。Output
问题描述
有一个包含$H$行和$W$列的网格。令$(i, j)$表示网格中从上数第$i$行,从左数第$j$列的方格。
网格中的每个方格要么有洞,要么没有洞。总共有$N$个有洞的方格:$(a_1, b_1), (a_2, b_2), \dots, (a_N, b_N)$。
当正整数三元组$(i, j, n)$满足以下条件时,其左上角为$(i, j)$,右下角为$(i + n - 1, j + n - 1)$的方形区域被称为“无洞的正方形”。
- $i + n - 1 \leq H$。
- $j + n - 1 \leq W$。
- 对于每一对非负整数$(k, l)$,满足$0 \leq k \leq n - 1, 0 \leq l \leq n - 1$,方格$(i + k, j + l)$没有洞。
网格中有多少个无洞的正方形?
约束条件
- $1 \leq H, W \leq 3000$
- $0 \leq N \leq \min(H \times W, 10^5)$
- $1 \leq a_i \leq H$
- $1 \leq b_i \leq W$
- 所有的$(a_i, b_i)$两两不同。
- 所有的输入值都是整数。
输入
输入从标准输入按照以下格式给出:
$H$ $W$ $N$ $a_1$ $b_1$ $a_2$ $b_2$ $\vdots$ $a_N$ $b_N$
输出
打印无洞的正方形的数量。
样例输入1
2 3 1 2 3
样例输出1
6
有六个无洞的正方形,如下所示。前五个的$n=1$,左上角和右下角是同一个方格。
- 其左上角和右下角为$(1, 1)$的正方形区域。
- 其左上角和右下角为$(1, 2)$的正方形区域。
- 其左上角和右下角为$(1, 3)$的正方形区域。
- 其左上角和右下角为$(2, 1)$的正方形区域。
- 其左上角和右下角为$(2, 2)$的正方形区域。
- 其左上角为$(1, 1)$,右下角为$(2, 2)$的正方形区域。
样例输入2
3 2 6 1 1 1 2 2 1 2 2 3 1 3 2
样例输出2
0
可能没有无洞的正方形。
样例输入3
1 1 0
样例输出3
1
整个网格可能是一个无洞的正方形。
样例输入4
3000 3000 0
样例输出4
9004500500