102913: [Atcoder]ABC291 D - Flip Cards

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:16 Solved:0

Description

Score : $400$ points

Problem Statement

$N$ cards, numbered $1$ through $N$, are arranged in a line. For each $i\ (1\leq i < N)$, card $i$ and card $(i+1)$ are adjacent to each other. Card $i$ has $A_i$ written on its front, and $B_i$ written on its back. Initially, all cards are face up.

Consider flipping zero or more cards chosen from the $N$ cards. Among the $2^N$ ways to choose the cards to flip, find the number, modulo $998244353$, of such ways that:

  • when the chosen cards are flipped, for every pair of adjacent cards, the integers written on their face-up sides are different.

Constraints

  • $1\leq N \leq 2\times 10^5$
  • $1\leq A_i,B_i \leq 10^9$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

$N$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$

Output

Print the answer as an integer.


Sample Input 1

3
1 2
4 2
3 4

Sample Output 1

4

Let $S$ be the set of card numbers to flip.

For example, when $S=\{2,3\}$ is chosen, the integers written on their visible sides are $1,2$, and $4$, from card $1$ to card $3$, so it satisfies the condition.

On the other hand, when $S=\{3\}$ is chosen, the integers written on their visible sides are $1,4$, and $4$, from card $1$ to card $3$, where the integers on card $2$ and card $3$ are the same, violating the condition.

Four $S$ satisfy the conditions: $\{\},\{1\},\{2\}$, and $\{2,3\}$.


Sample Input 2

4
1 5
2 6
3 7
4 8

Sample Output 2

16

Sample Input 3

8
877914575 602436426
861648772 623690081
476190629 262703497
971407775 628894325
822804784 450968417
161735902 822804784
161735902 822804784
822804784 161735902

Sample Output 3

48

Input

题意翻译

- 有 $n$ 个卡片排成一排,编号为 $1,2,...,n$。 - 第 $i$ 个卡片的正面是 $a_i$,反面是 $b_i$。 - 现在你可以将每个卡片翻到正面或反面,使相邻两个卡片上的数字互不相同。 - 求方案数对 $998244353$ 取模。 - $1\le n\le2\times10^5$,$1\le a_i,b_i\le 10^9$

Output

得分:400分

问题描述

将标有数字$1$到$N$的$N$张卡片排成一行。对于每一对相邻的卡片$i\ (1\leq i < N)$,卡片$i$和卡片$(i+1)$相邻。卡片$i$的正面写有$A_i$,背面写有$B_i$。起初,所有卡片正面朝上。

考虑从$N$张卡片中选择零张或多张进行翻转。在$2^N$种选择卡片翻转的方法中,找出满足以下条件的方法的数量(对$998244353$取模):

  • 当选择的卡片翻转后,每一对相邻的卡片,正面朝上的数字都不同。

约束条件

  • $1\leq N \leq 2\times 10^5$
  • $1\leq A_i,B_i \leq 10^9$
  • 输入中的所有值都是整数。

输入

输入通过标准输入给出,格式如下:

$N$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$

输出

以整数形式打印答案。


样例输入1

3
1 2
4 2
3 4

样例输出1

4

令$S$为需要翻转的卡片编号集合。

例如,当选择$S=\{2,3\}$时,从卡片$1$到卡片$3$,正面朝上的数字分别是$1,2$和$4$,因此满足条件。

而当选择$S=\{3\}$时,从卡片$1$到卡片$3$,正面朝上的数字分别是$1,4$和$4$,其中卡片$2$和卡片$3$上的数字相同,违反了条件。

有四个$S$满足条件:$\{\},\{1\},\{2\}$和$\{2,3\}$。


样例输入2

4
1 5
2 6
3 7
4 8

样例输出2

16

样例输入3

8
877914575 602436426
861648772 623690081
476190629 262703497
971407775 628894325
822804784 450968417
161735902 822804784
161735902 822804784
822804784 161735902

样例输出3

48

HINT

n张卡片,每张卡片有两个数,一开始ai朝上,翻转后bi朝上,有多少种翻转方案,使得相邻两张卡片朝上的数字不一样?

加入题单

上一题 下一题 算法标签: