102844: [AtCoder]ABC284 E - Count Simple Paths
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $500$ points
Problem Statement
You are given a simple undirected graph with $N$ vertices numbered $1$ to $N$ and $M$ edges numbered $1$ to $M$. Edge $i$ connects vertex $u_i$ and vertex $v_i$. The degree of each vertex is at most $10$.
Let $K$ be the number of simple paths (paths without repeated vertices) starting from vertex $1$. Print $\min(K, 10^6)$.
Constraints
- $1 \leq N \leq 2 \times 10^5$
- $0 \leq M \leq \min \left(2 \times 10^5, \frac{N(N-1)}{2}\right)$
- $1 \leq u_i, v_i \leq N$
- The given graph is simple.
- The degree of each vertex in the given graph is at most $10$.
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
$N$ $M$ $u_1$ $v_1$ $u_2$ $v_2$ $\vdots$ $u_M$ $v_M$
Output
Print the answer.
Sample Input 1
4 2 1 2 2 3
Sample Output 1
3
We have the following three paths that count. (Note that a path of length $0$ also counts.)
- Vertex $1$;
- vertex $1$, vertex $2$;
- vertex $1$, vertex $2$, vertex $3$.
Sample Input 2
4 6 1 2 1 3 1 4 2 3 2 4 3 4
Sample Output 2
16
Sample Input 3
8 21 2 6 1 3 5 6 3 8 3 6 4 7 4 6 3 4 1 5 2 4 1 2 2 7 1 4 3 5 2 5 2 3 4 5 3 7 6 7 5 7 2 8
Sample Output 3
2023
Input
题意翻译
给定一张 $N$ 个节点 $M$ 条边的无向图,保证每个节点的度数 $\le 10$。 记从任意节点回到 $1$ 号点的不同路径总数为 $K$,请输出 $\min(K,10^6)$。 翻译 by @Mars\_DingdangOutput
分数:500分
问题描述
给你一个简单的无向图,有N个顶点,编号为1到N,有M条边,编号为1到M。第i条边连接顶点u_i和顶点v_i。每个顶点的度数最多为10。
设K为从顶点1开始的简单路径(没有重复顶点的路径)的数量。输出$\min(K, 10^6)$。
约束条件
- $1 \leq N \leq 2 \times 10^5$
- $0 \leq M \leq \min \left(2 \times 10^5, \frac{N(N-1)}{2}\right)$
- $1 \leq u_i, v_i \leq N$
- 给定的图是简单的。
- 给定图中每个顶点的度数最多为$10$。
- 输入中的所有值都是整数。
输入
输入通过标准输入给出,格式如下:
$N$ $M$ $u_1$ $v_1$ $u_2$ $v_2$ $\vdots$ $u_M$ $v_M$
输出
输出答案。
样例输入1
4 2 1 2 2 3
样例输出1
3
我们有以下三个路径计数。 (请注意,长度为0的路径也计数。)
- 顶点$1$;
- 顶点$1$,顶点$2$;
- 顶点$1$,顶点$2$,顶点$3$。
样例输入2
4 6 1 2 1 3 1 4 2 3 2 4 3 4
样例输出2
16
样例输入3
8 21 2 6 1 3 5 6 3 8 3 6 4 7 4 6 3 4 1 5 2 4 1 2 2 7 1 4 3 5 2 5 2 3 4 5 3 7 6 7 5 7 2 8
样例输出3
2023