102741: [AtCoder]ABC274 B - Line Sensor
Description
Score : $200$ points
Problem Statement
There is a grid with $H$ rows from top to bottom and $W$ columns from left to right. Let $(i, j)$ denote the square at the $i$-th row from the top and $j$-th column from the left.
The squares are described by characters $C_{i,j}$. If $C_{i,j}$ is .
, $(i, j)$ is empty; if it is #
, $(i, j)$ contains a box.
For integers $j$ satisfying $1 \leq j \leq W$, let the integer $X_j$ defined as follows.
- $X_j$ is the number of boxes in the $j$-th column. In other words, $X_j$ is the number of integers $i$ such that $C_{i,j}$ is
#
.
Find all of $X_1, X_2, \dots, X_W$.
Constraints
- $1 \leq H \leq 1000$
- $1 \leq W \leq 1000$
- $H$ and $W$ are integers.
- $C_{i, j}$ is
.
or#
.
Input
The input is given from Standard Input in the following format:
$H$ $W$ $C_{1,1}C_{1,2}\dots C_{1,W}$ $C_{2,1}C_{2,2}\dots C_{2,W}$ $\vdots$ $C_{H,1}C_{H,2}\dots C_{H,W}$
Output
Print $X_1, X_2, \dots, X_W$ in the following format:
$X_1$ $X_2$ $\dots$ $X_W$
Sample Input 1
3 4 #..# .#.# .#.#
Sample Output 1
1 2 0 3
In the $1$-st column, one square, $(1, 1)$, contains a box. Thus, $X_1 = 1$.
In the $2$-nd column, two squares, $(2, 2)$ and $(3, 2)$, contain a box. Thus, $X_2 = 2$.
In the $3$-rd column, no squares contain a box. Thus, $X_3 = 0$.
In the $4$-th column, three squares, $(1, 4)$, $(2, 4)$, and $(3, 4)$, contain a box. Thus, $X_4 = 3$.
Therefore, the answer is $(X_1, X_2, X_3, X_4) = (1, 2, 0, 3)$.
Sample Input 2
3 7 ....... ....... .......
Sample Output 2
0 0 0 0 0 0 0
There may be no square that contains a box.
Sample Input 3
8 3 .#. ### .#. .#. .## ..# ##. .##
Sample Output 3
2 7 4
Sample Input 4
5 47 .#..#..#####..#...#..#####..#...#...###...##### .#.#...#.......#.#...#......##..#..#...#..#.... .##....#####....#....#####..#.#.#..#......##### .#.#...#........#....#......#..##..#...#..#.... .#..#..#####....#....#####..#...#...###...#####
Sample Output 4
0 5 1 2 2 0 0 5 3 3 3 3 0 0 1 1 3 1 1 0 0 5 3 3 3 3 0 0 5 1 1 1 5 0 0 3 2 2 2 2 0 0 5 3 3 3 3
Input
题意翻译
一个 $H\times W$ 的矩阵,输出每一列字符`#`的个数。Output
分数:$200$分
问题描述
有一个从上到下有$H$行、从左到右有$W$列的网格。让$(i, j)$表示从上数第$i$行、从左数第$j$列的方格。
方格用字符$C_{i,j}$描述。如果$C_{i,j}$是.
,那么$(i, j)$是空的;如果它是#
,那么$(i, j)$包含一个箱子。
对于满足$1 \leq j \leq W$的整数$j$,定义整数$X_j$如下。
- $X_j$是第$j$列中的箱子数量。换句话说,$X_j$是满足$C_{i,j}$是
#
的整数$i$的数量。
找出所有的$X_1, X_2, \dots, X_W$。
约束
- $1 \leq H \leq 1000$
- $1 \leq W \leq 1000$
- $H$和$W$是整数。
- $C_{i, j}$是
.
或#
。
输入
输入从标准输入按以下格式给出:
$H$ $W$ $C_{1,1}C_{1,2}\dots C_{1,W}$ $C_{2,1}C_{2,2}\dots C_{2,W}$ $\vdots$ $C_{H,1}C_{H,2}\dots C_{H,W}$
输出
按以下格式输出$X_1, X_2, \dots, X_W$:
$X_1$ $X_2$ $\dots$ $X_W$
样例输入1
3 4 #..# .#.# .#.#
样例输出1
1 2 0 3
在第$1$列中,有一个方格$(1, 1)$包含一个箱子。因此,$X_1 = 1$。
在第$2$列中,有两个方格$(2, 2)$和$(3, 2)$包含一个箱子。因此,$X_2 = 2$。
在第$3$列中,没有方格包含一个箱子。因此,$X_3 = 0$。
在第$4$列中,有三个方格$(1, 4)$、$(2, 4)$和$(3, 4)$包含一个箱子。因此,$X_4 = 3$。
因此,答案是$(X_1, X_2, X_3, X_4) = (1, 2, 0, 3)$。
样例输入2
3 7 ....... ....... .......
样例输出2
0 0 0 0 0 0 0
可能没有任何包含箱子的方格。
样例输入3
8 3 .#. ###