102730: [AtCoder]ABC273 A - A Recursive Function
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $100$ points
Problem Statement
A function $f(x)$ defined for non-negative integer $x$ satisfies the following conditions:
- $f(0) = 1$;
- $f(k) = k \times f(k-1)$ for all positive integers $k$.
Find $f(N)$.
Constraints
- $N$ is an integer such that $0 \le N \le 10$.
Input
The input is given from Standard Input in the following format:
$N$
Output
Print the answer as an integer.
Sample Input 1
2
Sample Output 1
2
We have $f(2) = 2 \times f(1) = 2 \times 1 \times f(0) = 2 \times 1 \times 1 = 2$.
Sample Input 2
3
Sample Output 2
6
We have $f(3) = 3 \times f(2) = 3 \times 2 = 6$.
Sample Input 3
0
Sample Output 3
1
Sample Input 4
10
Sample Output 4
3628800
Input
题意翻译
求 $n$ 的阶乘。$0\le n\le 10$。 特别的:$0$ 的阶乘为 $1$。Output
分数:100分
问题描述
定义在非负整数上的函数$f(x)$满足以下条件:
- $f(0) = 1$;
- 对于所有的正整数$k$,$f(k) = k \times f(k-1)$。
求$f(N)$。
限制条件
- $N$是一个整数,满足$0 \le N \le 10$。
输入
从标准输入按以下格式给出输入:
$N$
输出
将答案输出为一个整数。
样例输入1
2
样例输出1
2
我们有$f(2) = 2 \times f(1) = 2 \times 1 \times f(0) = 2 \times 1 \times 1 = 2$。
样例输入2
3
样例输出2
6
我们有$f(3) = 3 \times f(2) = 3 \times 2 = 6$。
样例输入3
0
样例输出3
1
样例输入4
10
样例输出4
3628800