102690: [AtCoder]ABC269 A - Anyway Takahashi
Description
Score : $100$ points
Problem Statement
You are given integers $a$, $b$, $c$, and $d$. Print two lines as follows.
The first line should contain the result of calculating $(a + b) \times (c - d)$ as an integer.
The second line should contain Takahashi
, regardless of the input.
Constraints
- $-100 \leq a, b, c, d \leq 100$
- $a$, $b$, $c$, and $d$ are integers.
Input
The input is given from Standard Input in the following format:
$a$ $b$ $c$ $d$
Output
Print two lines according to the Problem Statement.
Sample Input 1
1 2 5 3
Sample Output 1
6 Takahashi
We have $(1 + 2) \times(5 - 3) = 3 \times 2 = 6$, so the first line should contain $6$.
The second line should contain Takahashi
. Lowercasing the first character or incorrect spelling will not be accepted, so be careful.
Sample Input 2
10 -20 30 -40
Sample Output 2
-700 Takahashi
The input or output may contain negative numbers.
Sample Input 3
100 100 100 -100
Sample Output 3
40000 Takahashi
Input
题意翻译
题意: 输入整数 $ a,\ b,\ c,\ d $ . 第一行输出 $ (a\ +\ b)\ \times\ (c\ -\ d) $ 的计算结果(以整数输出). 第二行输出 `Takahashi`Output
分数:$100$分
问题描述
给你四个整数$a$、$b$、$c$和$d$。按照以下格式打印两行。
第一行应该包含$(a + b) \times (c - d)$的计算结果,表示为整数。
第二行应该始终包含Takahashi
,不论输入如何。
限制条件
- $-100 \leq a, b, c, d \leq 100$
- $a$、$b$、$c$和$d$都是整数。
输入
输入以以下格式从标准输入给出:
$a$ $b$ $c$ $d$
输出
按照问题描述打印两行。
样例输入 1
1 2 5 3
样例输出 1
6 Takahashi
我们有$(1 + 2) \times(5 - 3) = 3 \times 2 = 6$,所以第一行应该包含$6$。
第二行应该包含Takahashi
。首字母小写或拼写错误将不被接受,所以要小心。
样例输入 2
10 -20 30 -40
样例输出 2
-700 Takahashi
输入或输出可能包含负数。
样例输入 3
100 100 100 -100
样例输出 3
40000 Takahashi