102647: [AtCoder]ABC264 Ex - Perfect Binary Tree

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $600$ points

Problem Statement

We have a rooted tree with $N$ vertices numbered $1,2,\dots,N$.
The tree is rooted at Vertex $1$, and the parent of Vertex $i \ge 2$ is Vertex $P_i(<i)$.
For each integer $k=1,2,\dots,N$, solve the following problem:

There are $2^{k-1}$ ways to choose some of the vertices numbered between $1$ and $k$ so that Vertex $1$ is chosen.
How many of them satisfy the following condition: the subgraph induced by the set of chosen vertices forms a perfect binary tree (with $2^d-1$ vertices for a positive integer $d$) rooted at Vertex $1$?
Since the count may be enormous, print the count modulo $998244353$.

What is an induced subgraph?

Let $S$ be a subset of the vertex set of a graph $G$. The subgraph $H$ induced by this vertex set $S$ is constructed as follows:

  • Let the vertex set of $H$ equal $S$.
  • Then, we add edges to $H$ as follows:
    • For all vertex pairs $(i, j)$ such that $i,j \in S, i < j$, if there is an edge connecting $i$ and $j$ in $G$, then add an edge connecting $i$ and $j$ to $H$.
What is a perfect binary tree? A perfect binary tree is a rooted tree that satisfies all of the following conditions:
  • Every vertex that is not a leaf has exactly $2$ children.
  • All leaves have the same distance from the root.
Here, we regard a graph with $1$ vertex and $0$ edges as a perfect binary tree, too.

Constraints

  • All values in input are integers.
  • $1 \le N \le 3 \times 10^5$
  • $1 \le P_i < i$

Input

Input is given from Standard Input in the following format:

$N$
$P_2$ $P_3$ $\dots$ $P_N$

Output

Print $N$ lines. The $i$-th ($1 \le i \le N$) line should contain the answer as an integer when $k=i$.


Sample Input 1

10
1 1 2 1 2 5 5 5 1

Sample Output 1

1
1
2
2
4
4
4
5
7
10

The following ways of choosing vertices should be counted:

  • $\{1\}$ when $k \ge 1$
  • $\{1,2,3\}$ when $k \ge 3$
  • $\{1,2,5\},\{1,3,5\}$ when $k \ge 5$
  • $\{1,2,4,5,6,7,8\}$ when $k \ge 8$
  • $\{1,2,4,5,6,7,9\},\{1,2,4,5,6,8,9\}$ when $k \ge 9$
  • $\{1,2,10\},\{1,3,10\},\{1,5,10\}$ when $k = 10$

Sample Input 2

1

Sample Output 2

1

If $N=1$, the $2$-nd line of the Input is empty.


Sample Input 3

10
1 2 3 4 5 6 7 8 9

Sample Output 3

1
1
1
1
1
1
1
1
1
1

Sample Input 4

13
1 1 1 2 2 2 3 3 3 4 4 4

Sample Output 4

1
1
2
4
4
4
4
4
7
13
13
19
31

Input

题意翻译

我们有一颗以 $1$ 为根的有根树。 对于每一个 $2 \le i \le n$ 的 $i$,它的父亲是 $p_i$。 我们随机选一些编号在 $1$ 到 $k$ 的点,钦定节点 $1$ 一定被选中,一共有 $2^{k-1}$ 种选择方法。 现在芷萱姐姐想知道有多少种选择方法,使得所选顶点的诱导子图是一颗以 $1$ 为根的满二叉树。 + 输入的全都是整数 + $1 \le N \le 10^5$ + $1 \le p_i<i$ Translated by [Tx_Lcy](https://www.luogu.com.cn/user/253608)

Output

得分:600分 部分 问题描述 我们有一个根节点为1的树,共有N个节点,编号为1,2,...,N。 节点i≥2的父节点为节点P_i(

加入题单

上一题 下一题 算法标签: